pose_experiment / tool_utils.py
yijiu's picture
feat:change color
e85c769
raw
history blame contribute delete
No virus
12.4 kB
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
import skimage
import torch
from PIL import Image
joints = [
'left ankle',
'left knee',
'left hip',
'right hip',
'right knee',
'right ankle',
'belly',
'chest',
'neck',
'head',
'left wrist',
'left elbow',
'left shoulder',
'right shoulder',
'right elbow',
'right wrist'
]
def generate_heatmap(heatmap, pt, sigma=(33, 33), sigma_valu=7):
'''
:param heatmap: should be a np zeros array with shape (H,W) (only i channel), not (H,W,1)
:param pt: point coords, np array
:param sigma: should be a tuple with odd values (obsolete)
:param sigma_valu: vaalue for gaussian blur
:return: a np array of one joint heatmap with shape (H,W)
This function is obsolete, use 'generate_heatmaps()' instead.
'''
heatmap[int(pt[1])][int(pt[0])] = 1
# heatmap = cv2.GaussianBlur(heatmap, sigma, 0) #(H,W,1) -> (H,W)
heatmap = skimage.filters.gaussian(
heatmap, sigma=sigma_valu) # (H,W,1) -> (H,W)
am = np.amax(heatmap)
heatmap = heatmap/am
return heatmap
def generate_heatmaps(img, pts, sigma=(33, 33), sigma_valu=7):
'''
:param img: np arrray img, (H,W,C)
:param pts: joint points coords, np array, same resolu as img
:param sigma: should be a tuple with odd values (obsolete)
:param sigma_valu: vaalue for gaussian blur
:return: np array heatmaps, (H,W,num_pts)
'''
H, W = img.shape[0], img.shape[1]
num_pts = pts.shape[0]
heatmaps = np.zeros((H, W, num_pts))
for i, pt in enumerate(pts):
# Filter unavailable heatmaps
if pt[0] == 0 and pt[1] == 0:
continue
# Filter some points out of the image
if pt[0] >= W:
pt[0] = W-1
if pt[1] >= H:
pt[1] = H-1
heatmap = heatmaps[:, :, i]
heatmap[int(pt[1])][int(pt[0])] = 1
# heatmap = cv2.GaussianBlur(heatmap, sigma, 0) #(H,W,1) -> (H,W)
heatmap = skimage.filters.gaussian(
heatmap, sigma=sigma_valu) # (H,W,1) -> (H,W)
am = np.amax(heatmap)
heatmap = heatmap / am
heatmaps[:, :, i] = heatmap
return heatmaps
def load_image(path_image):
img = mpimg.imread(path_image)
# Return a np array (H,W,C)
return img
def crop(img, ele_anno, use_randscale=True, use_randflipLR=False, use_randcolor=False):
'''
:param img: np array of the origin image, (H,W,C)
:param ele_anno: one element of json annotation
:return: img_crop, ary_pts_crop, c_crop after cropping
'''
H, W = img.shape[0], img.shape[1]
s = ele_anno['scale_provided']
c = ele_anno['objpos']
# Adjust center and scale
if c[0] != -1:
c[1] = c[1] + 15 * s
s = s * 1.25
ary_pts = np.array(ele_anno['joint_self']) # (16, 3)
ary_pts_temp = ary_pts[np.any(ary_pts != [0, 0, 0], axis=1)]
if use_randscale:
scale_rand = np.random.uniform(low=1.0, high=3.0)
else:
scale_rand = 1
W_min = max(np.amin(ary_pts_temp, axis=0)[0] - s * 15 * scale_rand, 0)
H_min = max(np.amin(ary_pts_temp, axis=0)[1] - s * 15 * scale_rand, 0)
W_max = min(np.amax(ary_pts_temp, axis=0)[0] + s * 15 * scale_rand, W)
H_max = min(np.amax(ary_pts_temp, axis=0)[1] + s * 15 * scale_rand, H)
W_len = W_max - W_min
H_len = H_max - H_min
window_len = max(H_len, W_len)
pad_updown = (window_len - H_len)/2
pad_leftright = (window_len - W_len)/2
# Calculate 4 corner position
W_low = max((W_min - pad_leftright), 0)
W_high = min((W_max + pad_leftright), W)
H_low = max((H_min - pad_updown), 0)
H_high = min((H_max + pad_updown), H)
# Update joint points and center
ary_pts_crop = np.where(
ary_pts == [0, 0, 0], ary_pts, ary_pts - np.array([W_low, H_low, 0]))
c_crop = c - np.array([W_low, H_low])
img_crop = img[int(H_low):int(H_high), int(W_low):int(W_high), :]
# Pad when H, W different
H_new, W_new = img_crop.shape[0], img_crop.shape[1]
window_len_new = max(H_new, W_new)
pad_updown_new = int((window_len_new - H_new)/2)
pad_leftright_new = int((window_len_new - W_new)/2)
# ReUpdate joint points and center (because of the padding)
ary_pts_crop = np.where(ary_pts_crop == [
0, 0, 0], ary_pts_crop, ary_pts_crop + np.array([pad_leftright_new, pad_updown_new, 0]))
c_crop = c_crop + np.array([pad_leftright_new, pad_updown_new])
img_crop = cv2.copyMakeBorder(img_crop, pad_updown_new, pad_updown_new,
pad_leftright_new, pad_leftright_new, cv2.BORDER_CONSTANT, value=0)
# change dtype and num scale
img_crop = img_crop / 255.
img_crop = img_crop.astype(np.float64)
if use_randflipLR:
flip = np.random.random() > 0.5
# print('rand_flipLR', flip)
if flip:
# (H,W,C)
img_crop = np.flip(img_crop, 1)
# Calculate flip pts, remember to filter [0,0] which is no available heatmap
ary_pts_crop = np.where(ary_pts_crop == [0, 0, 0], ary_pts_crop,
[window_len_new, 0, 0] + ary_pts_crop * [-1, 1, 0])
c_crop = [window_len_new, 0] + c_crop * [-1, 1]
# Rearrange pts
ary_pts_crop = np.concatenate(
(ary_pts_crop[5::-1], ary_pts_crop[6:10], ary_pts_crop[15:9:-1]))
if use_randcolor:
randcolor = np.random.random() > 0.5
# print('rand_color', randcolor)
if randcolor:
img_crop[...,
0] *= np.clip(np.random.uniform(low=0.8, high=1.2), 0., 1.)
img_crop[...,
1] *= np.clip(np.random.uniform(low=0.8, high=1.2), 0., 1.)
img_crop[...,
2] *= np.clip(np.random.uniform(low=0.8, high=1.2), 0., 1.)
return img_crop, ary_pts_crop, c_crop
def change_resolu(img, pts, c, resolu_out=(256, 256)):
'''
:param img: np array of the origin image
:param pts: joint points np array corresponding to the image, same resolu as img
:param c: center
:param resolu_out: a list or tuple
:return: img_out, pts_out, c_out under resolu_out
'''
H_in = img.shape[0]
W_in = img.shape[1]
H_out = resolu_out[0]
W_out = resolu_out[1]
H_scale = H_in/H_out
W_scale = W_in/W_out
pts_out = pts/np.array([W_scale, H_scale, 1])
c_out = c/np.array([W_scale, H_scale])
img_out = skimage.transform.resize(img, tuple(resolu_out))
return img_out, pts_out, c_out
def heatmaps_to_coords(heatmaps, resolu_out=[64, 64], prob_threshold=0.2):
'''
:param heatmaps: tensor with shape (64,64,16)
:param resolu_out: output resolution list
:return coord_joints: np array, shape (16,2)
'''
num_joints = heatmaps.shape[2]
# Resize
heatmaps = skimage.transform.resize(heatmaps, tuple(resolu_out))
coord_joints = np.zeros((num_joints, 3))
for i in range(num_joints):
heatmap = heatmaps[..., i]
max = np.max(heatmap)
# Only keep points larger than a threshold
if max >= prob_threshold:
idx = np.where(heatmap == max)
H = idx[0][0]
W = idx[1][0]
else:
H = 0
W = 0
coord_joints[i] = [W, H, max]
return coord_joints
def show_heatmaps(img, heatmaps, c=np.zeros((2)), num_fig=1):
'''
:param img: np array (H,W,3)
:param heatmaps: np array (H,W,num_pts)
:param c: center, np array (2,)
'''
H, W = img.shape[0], img.shape[1]
if heatmaps.shape[0] != H:
heatmaps = skimage.transform.resize(heatmaps, (H, W))
plt.figure(num_fig)
for i in range(heatmaps.shape[2] + 1):
plt.subplot(4, 5, i + 1)
if i == 0:
plt.title('Origin')
else:
plt.title(joints[i-1])
if i == 0:
plt.imshow(img)
else:
plt.imshow(heatmaps[:, :, i - 1])
plt.axis('off')
plt.subplot(4, 5, 20)
plt.axis('off')
plt.show()
def heatmap2rgb(heatmap):
"""
: heatmap: (h,w)
"""
heatmap = heatmap.detach().cpu().numpy()
# plt.figure(figsize=(1,1))
# plt.axis('off')
# plt.imshow(heatmap)
# plt.savefig('tmp/tmp.jpg', bbox_inches='tight', pad_inches=0, dpi=70)
# plt.close()
# plt.clf()
# img = Image.open('tmp/tmp.jpg')
cm = plt.get_cmap('jet')
normed_data = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap + 1e-8))
mapped_data = cm(normed_data)
# (h,w,c)
# img = np.array(img)
img = np.array(mapped_data)
img = img[:,:,:3]
img = torch.tensor(img).permute(2, 0, 1)
return img
def heatmaps2rgb(heatmaps):
"""
: heatmaps: (b,h,w)
"""
out_imgs = []
for heatmap in heatmaps:
out_imgs.append(heatmap2rgb(heatmap))
return torch.stack(out_imgs)
# def draw_joints(img, pts):
# scores = pts[:,2]
# pts = np.array(pts).astype(int)
# for i in range(pts.shape[0]):
# if pts[i, 0] != 0 and pts[i, 1] != 0:
# img = cv2.circle(img, (pts[i, 0], pts[i, 1]), radius=3,
# color=(255, 0, 0), thickness=-1)
# print('img',img.max(),img.min())
# # img = cv2.putText(img, f'{joints[i]}: {scores[i]:.2f}', (
# # pts[i, 0]+5, pts[i, 1]-5), cv2.FONT_HERSHEY_SIMPLEX, .25, (255, 0, 0))
# # Left arm
# for i in range(10, 13-1):
# if pts[i, 0] != 0 and pts[i, 1] != 0 and pts[i+1, 0] != 0 and pts[i+1, 1] != 0:
# img = cv2.line(img, (pts[i, 0], pts[i, 1]), (pts[i+1, 0],
# pts[i+1, 1]), color=(255, 0, 0), thickness=1)
# # Right arm
# for i in range(13, 16-1):
# if pts[i, 0] != 0 and pts[i, 1] != 0 and pts[i+1, 0] != 0 and pts[i+1, 1] != 0:
# img = cv2.line(img, (pts[i, 0], pts[i, 1]), (pts[i+1, 0],
# pts[i+1, 1]), color=(255, 0, 0), thickness=1)
# # Left leg
# for i in range(0, 3-1):
# if pts[i, 0] != 0 and pts[i, 1] != 0 and pts[i+1, 0] != 0 and pts[i+1, 1] != 0:
# img = cv2.line(img, (pts[i, 0], pts[i, 1]), (pts[i+1, 0],
# pts[i+1, 1]), color=(255, 0, 0), thickness=1)
# # Right leg
# for i in range(3, 6-1):
# if pts[i, 0] != 0 and pts[i, 1] != 0 and pts[i+1, 0] != 0 and pts[i+1, 1] != 0:
# img = cv2.line(img, (pts[i, 0], pts[i, 1]), (pts[i+1, 0],
# pts[i+1, 1]), color=(255, 0, 0), thickness=1)
# # Body
# for i in range(6, 10-1):
# if pts[i, 0] != 0 and pts[i, 1] != 0 and pts[i+1, 0] != 0 and pts[i+1, 1] != 0:
# img = cv2.line(img, (pts[i, 0], pts[i, 1]), (pts[i+1, 0],
# pts[i+1, 1]), color=(255, 0, 0), thickness=1)
# if pts[2, 0] != 0 and pts[2, 1] != 0 and pts[3, 0] != 0 and pts[3, 1] != 0:
# img = cv2.line(img, (pts[2, 0], pts[2, 1]), (pts[2+1, 0],
# pts[2+1, 1]), color=(255, 0, 0), thickness=1)
# if pts[12, 0] != 0 and pts[12, 1] != 0 and pts[13, 0] != 0 and pts[13, 1] != 0:
# img = cv2.line(img, (pts[12, 0], pts[12, 1]), (pts[12+1, 0],
# pts[12+1, 1]), color=(255, 0, 0), thickness=1)
# return img
def draw_joints(img, pts):
# Convert the image to the range [0, 255] for visualization
img_visualization = (img).astype(np.uint8)
# Draw lines for the body parts
for i in range(10, 13 - 1):
draw_line(img_visualization, pts[i], pts[i + 1])
for i in range(13, 16 - 1):
draw_line(img_visualization, pts[i], pts[i + 1])
for i in range(0, 3 - 1):
draw_line(img_visualization, pts[i], pts[i + 1])
for i in range(3, 6 - 1):
draw_line(img_visualization, pts[i], pts[i + 1])
for i in range(6, 10 - 1):
draw_line(img_visualization, pts[i], pts[i + 1])
draw_line(img_visualization, pts[2], pts[3])
draw_line(img_visualization, pts[12], pts[13])
return img_visualization / 255.0
def draw_line(img, pt1, pt2):
if pt1[0] != 0 and pt1[1] != 0 and pt2[0] != 0 and pt2[1] != 0:
cv2.line(img, (int(pt1[0]), int(pt1[1])), (int(pt2[0]), int(pt2[1])), color=(57, 255, 20), thickness=2)