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Abstract
We trained a large, deep convolutional neural network to 
classify the 1.2 million high-resolution images in the 
ImageNet LSVRC-2010 contest into the 1000 different 
classes. On the test data, we achieved top-1 and top-5 error 
rates of 37.5% and 17.0%, respectively, which is considerably 
better than the previous state-of-the-art. The neural network, 
which has 60 million parameters and 650,000 neurons, con-
sists of five convolutional layers, some of which are followed 
by max-pooling layers, and three fully connected layers with a 
final 1000-way softmax. To make training faster, we used non-
saturating neurons and a very efficient GPU implementation 
of the convolution operation. To reduce overfitting in the 
fully connected layers we employed a recently developed reg-
ularization method called “dropout” that proved to be very 
effective. We also entered a variant of this model in the 
ILSVRC-2012 competition and achieved a winning top-5 test 
error rate of 15.3%, compared to 26.2% achieved by the sec-
ond-best entry.

1. PROLOGUE
Four years ago, a paper by Yann LeCun and his collaborators 
was rejected by the leading computer vision conference on 
the grounds that it used neural networks and therefore pro-
vided no insight into how to design a vision system. At the 
time, most computer vision researchers believed that a vision 
system needed to be carefully hand-designed using a detailed 
understanding of the nature of the task. They assumed that 
the task of classifying objects in natural images would never 
be solved by simply presenting examples of images and the 
names of the objects they contained to a neural network that 
acquired all of its knowledge from this training data.

What many in the vision research community failed to 
appreciate was that methods that require careful hand-engi-
neering by a programmer who understands the domain do 
not scale as well as methods that replace the programmer 
with a powerful general-purpose learning procedure. With 
enough computation and enough data, learning beats pro-
gramming for complicated tasks that require the integration 
of many different, noisy cues.

Four years ago, while we were at the University of Toronto, 
our deep neural network called SuperVision almost halved 
the error rate for recognizing objects in natural images and 
triggered an overdue paradigm shift in computer vision. 
Figure 4 shows some examples of what SuperVision can do.

SuperVision evolved from the multilayer neural networks 

that were widely investigated in the 1980s. These networks 
used multiple layers of feature detectors that were all learned 
from the training data. Neuroscientists and psychologists had 
hypothesized that a hierarchy of such feature detectors would 
provide a robust way to recognize objects but they had no idea 
how such a hierarchy could be learned. There was great excite-
ment in the 1980s because several different research groups 
discovered that multiple layers of feature detectors could be 
trained efficiently using a relatively straight-forward algorithm 
called backpropagation18, 22, 27, 33 to compute, for each image, 
how the classification performance of the whole network 
depended on the value of the weight on each connection.

Backpropagation worked well for a variety of tasks, but in 
the 1980s it did not live up to the very high expectations of its 
advocates. In particular, it proved to be very difficult to learn 
networks with many layers and these were precisely the net-
works that should have given the most impressive results. 
Many researchers concluded, incorrectly, that learning a 
deep neural network from random initial weights was just too 
difficult. Twenty years later, we know what went wrong: for 
deep neural networks to shine, they needed far more labeled 
data and hugely more computation.

2. INTRODUCTION
Current approaches to object recognition make essential 
use of machine learning methods. To improve their perfor-
mance, we can collect larger datasets, learn more powerful 
models, and use better techniques for preventing overfit-
ting. Until recently, datasets of labeled images were rela-
tively small—on the order of tens of thousands of images 
(e.g., NORB,19 Caltech-101/256,8, 10 and CIFAR-10/10014). 
Simple recognition tasks can be solved quite well with datas-
ets of this size, especially if they are augmented with label-
preserving transformations. For example, the current-best 
error rate on the MNIST digit-recognition task (<0.3%) 
approaches human performance.5 But objects in realistic 
settings exhibit considerable variability, so to learn to recog-
nize them it is necessary to use much larger training sets. 
And indeed, the shortcomings of small image datasets have 
been widely recognized (e.g., Ref.25), but it has only recently 
become possible to collect labeled datasets with millions of 
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images. The new larger datasets include LabelMe,28 which 
consists of hundreds of thousands of fully segmented 
images, and ImageNet,7 which consists of over 15 million 
labeled high-resolution images in over 22,000 categories.

To learn about thousands of objects from millions of 
images, we need a model with a large learning capacity. 
However, the immense complexity of the object recogni-
tion task means that this problem cannot be specified even 
by a dataset as large as ImageNet, so our model should also 
have lots of prior knowledge to compensate for all the data 
we do not have. Convolutional neural networks (CNNs) con-
stitute one such class of models.9, 15, 17, 19, 21, 26, 32 Their capacity 
can be controlled by varying their depth and breadth, and 
they also make strong and mostly correct assumptions 
about the nature of images (namely, stationarity of statis-
tics and locality of pixel dependencies). Thus, compared to 
standard feedforward neural networks with similarly sized 
layers, CNNs have much fewer connections and parameters 
and so they are easier to train, while their theoretically best 
performance is likely to be only slightly worse.

Despite the attractive qualities of CNNs, and despite the 
relative efficiency of their local architecture, they have still 
been prohibitively expensive to apply in large scale to high- 
resolution images. Luckily, current GPUs, paired with a 
highly optimized implementation of 2D convolution, are 
powerful enough to facilitate the training of interestingly-
large CNNs, and recent datasets such as ImageNet contain 
enough labeled examples to train such models without severe 
overfitting.

The specific contributions of this paper are as follows: we 
trained one of the largest CNNs to date on the subsets of 
ImageNet used in the ImageNet Large-Scale Visual 
Recognition Challenge (ILSVRC)-2010 and ILSVRC-2012 
competitions2 and achieved by far the best results ever 
reported on these datasets. We wrote a highly optimized GPU 
implementation of 2D convolution and all the other opera-
tions inherent in training CNNs, which we make available 
publicly.a Our network contains a number of new and 
unusual features which improve its performance and reduce 
its training time, which are detailed in Section 4. The size of 
our network made overfitting a significant problem, even 
with 1.2 million labeled training examples, so we used several 
effective techniques for preventing overfitting, which are 
described in Section 5. Our final network contains five convo-
lutional and three fully connected layers, and this depth 
seems to be important: we found that removing any convolu-
tional layer (each of which contains no more than 1% of the 
model’s parameters) resulted in inferior performance.

In the end, the network’s size is limited mainly by the 
amount of memory available on current GPUs and by the 
amount of training time that we are willing to tolerate. Our 
network takes between 5 and 6 days to train on two GTX 580 
3GB GPUs. All of our experiments suggest that our results can 
be improved simply by waiting for faster GPUs and bigger 
datasets to become available.

3. THE DATASET
ImageNet is a dataset of over 15 million labeled high- resolution 
images belonging to roughly 22,000 categories. The images 
were collected from the web and labeled by human labelers 
using Amazon’s Mechanical Turk crowd-sourcing tool. Starting 
in 2010, as part of the Pascal Visual Object Challenge, an annual 
competition called the ImageNet Large- Scale Visual 
Recognition Challenge (ILSVRC) has been held. ILSVRC uses a 
subset of ImageNet with roughly 1000 images in each of 1000 
categories. In all, there are roughly 1.2 million training images, 
50,000 validation images, and 150,000 testing images.

ILSVRC-2010 is the only version of ILSVRC for which the 
test set labels are available, so this is the version on which we 
performed most of our experiments. Since we also entered 
our model in the ILSVRC-2012 competition, in Section 7 we 
report our results on this version of the dataset as well, for 
which test set labels are unavailable. On ImageNet, it is cus-
tomary to report two error rates: top-1 and top-5, where the 
top-5 error rate is the fraction of test images for which the 
correct label is not among the five labels considered most 
probable by the model.

ImageNet consists of variable-resolution images, while 
our system requires a constant input dimensionality. 
Therefore, we down-sampled the images to a fixed resolution 
of 256 × 256. Given a rectangular image, we first rescaled the 
image such that the shorter side was of length 256, and then 
cropped out the central 256 × 256 patch from the resulting 
image. We did not pre process the images in any other way, 
except for subtracting the mean activity over the training set 
from each pixel. So we trained our network on the (centered) 
raw RGB values of the pixels.

4. THE ARCHITECTURE
The architecture of our network is summarized in Figure 2. It 
contains eight learned layers—five convolutional and three 
fully connected. Below, we describe some of the novel or 
unusual features of our network’s architecture. Sections 4.1–
4.4 are sorted according to our estimation of their impor-
tance, with the most important first.

4.1. Rectified Linear Unit nonlinearity
The standard way to model a neuron’s output f as a function 
of its input x is with f(x) = tanh(x) or f(x) = (1 + e−x)−1. In terms 
of training time with gradient descent, these saturating 
nonlinearities are much slower than the non-saturating 
nonlinearity f(x) = max(0, x). Following Nair and Hinton,24 
we refer to neurons with this non linearity as Rectified 
Linear Units (ReLUs). Deep CNNs with ReLUs train several 
times faster than their equivalents with tanh units. This is 
demonstrated in Figure 1, which shows the number of itera-
tions required to reach 25% training error on the CIFAR-10 
dataset for a particular four-layer convolutional network. 
This plot shows that we would not have been able to experi-
ment with such large neural networks for this work if we 
had used traditional saturating neuron models.

We are not the first to consider alternatives to traditional 
neuron models in CNNs. For example, Jarrett et al.13 claim 
that the nonlinearity f(x) = |tanh(x)| works particularly well 
with their type of contrast normalization followed by local a http://code.google.com/p/cuda-convnet/.
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average pooling on the Caltech-101 dataset. However, on this 
dataset the primary concern is preventing overfitting, so the 
effect they are observing is different from the accelerated 
ability to fit the training set which we report when using 
ReLUs. Faster learning has a great influence on the perfor-
mance of large models trained on large datasets.

4.2. Training on multiple GPUs
A single GTX 580 GPU has only 3GB of memory, which limits 
the maximum size of the networks that can be trained on it. 
It turns out that 1.2 million training examples are enough 
to train networks which are too big to fit on one GPU. 
Therefore we spread the net across two GPUs. Current GPUs 
are particularly well-suited to cross-GPU parallelization, as 
they are able to read from and write to one another’s mem-
ory directly, without going through host machine memory. 
The parallelization scheme that we employ essentially puts 
half of the kernels (or neurons) on each GPU, with one addi-
tional trick: the GPUs communicate only in certain layers. 
This means that, for example, the kernels of layer 3 take 
input from all kernel maps in layer 2. However, kernels in 
layer 4 take input only from those kernel maps in layer 3 
which reside on the same GPU. Choosing the pattern of con-
nectivity is a problem for cross-validation, but this allows us 
to precisely tune the amount of communication until it is 
an acceptable fraction of the amount of computation.

The resultant architecture is somewhat similar to that of 
the “columnar” CNN employed by Cireşan et al.,4 except that 
our columns are not independent (see Figure 2). This scheme 
reduces our top-1 and top-5 error rates by 1.7% and 1.2%, 
respectively, as compared with a net with half as many kernels 
in each convolutional layer trained on one GPU. The two-GPU 

net takes slightly less time to train than the one-GPU net.b

4.3. Local response normalization
ReLUs have the desirable property that they do not require 
input normalization to prevent them from saturating. If at 
least some training examples produce a positive input to a 
ReLU, learning will happen in that neuron. However, we still 
find that the following local normalization scheme aids gen-
eralization. Denoting by ai

x, y the activity of a neuron com-
puted by applying kernel i at position (x, y) and then applying 
the ReLU nonlinearity, the response-normalized activity bi

x, y 
is given by the expression

where the sum runs over n “adjacent” kernel maps at the 
same spatial position, and N is the total number of kernels in 
the layer. The ordering of the kernel maps is of course arbi-
trary and determined before training begins. This sort of 
response normalization implements a form of lateral inhibi-
tion inspired by the type found in real neurons, creating com-
petition for big activities among neuron outputs computed 
using different kernels. The constants k, n, α, and β are hyper-
parameters whose values are determined using a validation 
set; we used k = 2, n = 5, α = 10−4, and β = 0.75. We applied this 
normalization after applying the ReLU nonlinearity in cer-
tain layers (see Section 4.5).

This scheme bears some resemblance to the local contrast 
normalization scheme of Jarrett et al.,13 but ours would be 
more correctly termed “brightness normalization,” since we 
do not subtract the mean activity. Response normalization 
reduces our top-1 and top-5 error rates by 1.4% and 1.2%, 
respectively. We also verified the effectiveness of this scheme 
on the CIFAR-10 dataset: a four-layer CNN achieved a 13% test 
e r r o r  r a t e  w i t h o u t  n o r m a l i z a t i o n  a n d  1 1 %  w i t h 
normalization.c

4.4. Overlapping pooling
Pooling layers in CNNs summarize the outputs of neighbor-
ing groups of neurons in the same kernel map. Traditionally, 
the neighborhoods summarized by adjacent pooling units do 
not overlap (e.g., Refs.5, 13, 20). To be more precise, a pooling 
layer can be thought of as consisting of a grid of pooling units 
spaced s pixels apart, each summarizing a neighborhood of 
size z × z centered at the location of the pooling unit. If we set 
s = z, we obtain traditional local pooling as commonly 
employed in CNNs. If we set s < z, we obtain overlapping 
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Figure 1. A four-layer convolutional neural network with ReLUs 
(solid line) reaches a 25% training error rate on CIFAR-10 six times 
faster than an equivalent network with tanh neurons (dashed line). 
The learning rates for each network were chosen independently 
to make training as fast as possible. No regularization of any 
kind was employed. The magnitude of the effect demonstrated 
here varies with network architecture, but networks with ReLUs 
consistently learn several times faster than equivalents with 
saturating neurons.

b The one-GPU net actually has the same number of kernels as the two-GPU 
net in the final convolutional layer. This is because most of the net’s param-
eters are in the first fully connected layer, which takes the last convolutional 
layer as input. So to make the two nets have approximately the same num-
ber of parameters, we did not halve the size of the final convolutional layer 
(nor the fully connected layers which follow). Therefore this comparison is 
biased in favor of the one-GPU net, since it is bigger than “half the size” of 
the two-GPU net.
c We cannot describe this network in detail due to space constraints, but it 
is specified precisely by the code and parameter files provided here: http://
code.google.com/p/cuda-convnet/.
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of the second convolutional layer. The fourth convolu-
tional layer has 384 kernels of size 3 × 3 × 192, and the fifth 
convolutional layer has 256 kernels of size 3 × 3 × 192. The 
fully connected layers have 4096 neurons each.

5. REDUCING OVERFITTING
Our neural network architecture has 60 million parameters. 
Although the 1000 classes of ILSVRC make each training 
example impose 10 bits of constraint on the mapping from 
image to label, this turns out to be insufficient to learn so 
many parameters without considerable overfitting. Below, 
we describe the two primary ways in which we combat 
overfitting.

5.1. Data augmentation
The easiest and most common method to reduce overfitting 
on image data is to artificially enlarge the dataset using label-
preserving transformations (e.g., Refs.4, 5, 30). We employ two 
distinct forms of data augmentation, both of which allow 
transformed images to be produced from the original images 
with very little computation, so the transformed images do 
not need to be stored on disk. In our implementation, the 
transformed images are generated in Python code on the CPU 
while the GPU is training on the previous batch of images. So 
these data augmentation schemes are, in effect, computa-
tionally free.

The first form of data augmentation consists of generating 
image translations and horizontal reflections. We do this by 
extracting random 224 × 224 patches (and their horizontal 
reflections) from the 256 × 256 images and training our net-
work on these extracted patches.d This increases the size of 
our training set by a factor of 2048, though the resulting train-
ing examples are, of course, highly inter dependent. Without 
this scheme, our network suffers from substantial overfit-
ting, which would have forced us to use much smaller net-
works. At test time, the network makes a prediction by 
extracting five 224 × 224 patches (the four corner patches and 
the center patch) as well as their horizontal reflections (hence 
10 patches in all), and averaging the predictions made by the 
network’s softmax layer on the ten patches.

pooling. This is what we use throughout our network, with s = 
2 and z = 3. This scheme reduces the top-1 and top-5 error 
rates by 0.4% and 0.3%, respectively, as compared with the 
non overlapping scheme s = 2, z = 2, which produces output of 
equivalent dimensions. We generally observe during training 
that models with overlapping pooling find it slightly more dif-
ficult to overfit.

4.5. Overall architecture
Now we are ready to describe the overall architecture of 
our CNN. As depicted in Figure 2, the net contains eight 
layers with weights; the first five are convolutional and the 
remaining three are fully connected. The output of the last 
fully connected layer is fed to a 1000-way softmax which 
produces a distribution over the 1000 class labels. Our net-
work maximizes the multinomial logistic regression 
objective, which is equivalent to maximizing the average 
across training cases of the log-probability of the correct 
label under the prediction distribution.

The kernels of the second, fourth, and fifth convolutional 
layers are connected only to those kernel maps in the previous 
layer which reside on the same GPU (see Figure 2). The ker-
nels of the third convolutional layer are connected to all ker-
nel maps in the second layer.  The neurons in the 
fully-connected layers are connected to all neurons in the 
previous layer. Response-normalization layers follow the first 
and second convolutional layers. Max-pooling layers, of the 
kind described in Section 4.4, follow both response-normal-
ization layers as well as the fifth convolutional layer. The 
ReLU non linearity is applied to the output of every convolu-
tional and fully connected layer.

The first convolutional layer filters the 224 × 224 × 3 
input image with 96 kernels of size 11 × 11 × 3 with a stride 
of 4 pixels (this is the distance between the receptive field 
centers of neighboring neurons in a kernel map). The sec-
ond convolutional layer takes as input the (response-nor-
malized and pooled) output of the first convolutional layer 
and filters it with 256 kernels of size 5 × 5 × 48. The third, 
fourth, and fifth convolutional layers are connected to one 
another without any intervening pooling or normalization 
layers. The third convolutional layer has 384 kernels of size 
3 × 3 × 256 connected to the (normalized, pooled) outputs d This is the reason why the input images in Figure 2 are 224 × 224 × 3 dimensional.
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Figure 2. An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU 
runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. 
The network’s input is 150,528-dimensional, and the number of neurons in the network’s remaining layers is given by 290,400–186,624–
64,896–64,896–43,264–4096–4096–1000.
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The second form of data augmentation consists of altering 
the intensities of the RGB channels in training images. 
Specifically, we perform PCA on the set of RGB pixel values 
throughout the ImageNet training set. To each training 
image, we add multiples of the found principal components, 
with magnitudes proportional to the corresponding eigen 
values times a random variable drawn from a Gaussian with 
mean 0 and standard deviation 0.1. Therefore to each RGB 
image pixel Ixy = [IR

xy, I
G

xy, I
B

xy]
T we add the following quantity:

[p1, p2, p3] [α1λ1, α2λ2, α3λ3]T,

where pi and λi are ith eigenvector and eigenvalue of the 3 × 3 
covariance matrix of RGB pixel values, respectively, and αi is 
the aforementioned random variable. Each αi is drawn only 
once for all the pixels of a particular training image until that 
image is used for training again, at which point it is re drawn. 
This scheme approximately captures an important property 
of natural images, namely, that object identity is invariant to 
changes in the intensity and color of the illumination. This 
scheme reduces the top-1 error rate by over 1%.

5.2. Dropout
Combining the predictions of many different models is a very 
successful way to reduce test errors,1, 3 but it appears to be too 
expensive for big neural networks that already take several 
days to train. There is, however, a very efficient version of 
model combination that only costs about a factor of two dur-
ing training. The recently introduced technique, called 
“dropout”,12 consists of setting to zero the output of each hid-
den neuron with probability 0.5. The neurons which are 
“dropped out” in this way do not contribute to the forward 
pass and do not participate in back propagation. So every 
time an input is presented, the neural network samples a dif-
ferent architecture, but all these architectures share weights. 
This technique reduces complex co adaptations of neurons, 
since a neuron cannot rely on the presence of particular other 
neurons. It is, therefore, forced to learn more robust features 
that are useful in conjunction with many different random 
subsets of the other neurons. At test time, we use all the neu-
rons but multiply their outputs by 0.5, which is a reasonable 
approximation to taking the geometric mean of the predic-
tive distributions produced by the exponentially-many drop-
out networks.

We use dropout in the first two fully connected layers of 
Figure 2. Without dropout, our network exhibits substantial 
overfitting. Dropout roughly doubles the number of itera-
tions required to converge.

6. DETAILS OF LEARNING
We trained our models using stochastic gradient descent 
with a batch size of 128 examples, momentum of 0.9, and 
weight decay of 0.0005. We found that this small amount of 
weight decay was important for the model to learn. In other 
words, weight decay here is not merely a regularizer: it 
reduces the model’s training error. The update rule for weight 
w was

where i is the iteration index, u is the momentum variable, ε is 
the learning rate, and 〈 wi

〉Di
 is the average over the ith batch 

Di of the derivative of the objective with respect to w, evaluated 
at wi.

We initialized the weights in each layer from a zero-mean 
Gaussian distribution with standard deviation 0.01. We ini-
tialized the neuron biases in the second, fourth, and fifth 
convolutional layers, as well as in the fully connected hidden 
layers, with the constant 1. This initialization accelerates the 
early stages of learning by providing the ReLUs with positive 
inputs. We initialized the neuron biases in the remaining lay-
ers with the constant 0.

We used an equal learning rate for all layers, which we 
adjusted manually throughout training. The heuristic which 
we followed was to divide the learning rate by 10 when the vali-
dation error rate stopped improving with the current learning 
rate. The learning rate was initialized at 0.01 and reduced 
three times prior to termination. We trained the network for 
roughly 90 cycles through the training set of 1.2 million 
images, which took 5–6 days on two NVIDIA GTX 580 3GB 
GPUs.

7. RESULTS
Our results on ILSVRC-2010 are summarized in Table 1. Our 
network achieves top-1 and top-5 test set error rates of 37.5% 
and 17.0%, respectively.e The best performance achieved dur-
ing the ILSVRC-2010 competition was 47.1% and 28.2% with 
an approach that averages the predictions produced from six 
sparse-coding models trained on different features,2 and 
since then the best published results are 45.7% and 25.7% 
with an approach that averages the predictions of two classi-
fiers trained on Fisher Vectors (FVs) computed from two types 
of densely sampled features.29

We also entered our model in the ILSVRC-2012 competi-
tion and report our results in Table 2. Since the ILSVRC-2012 
test set labels are not publicly available, we cannot report test 

Model Top-1 (%) Top-5 (%)

Sparse coding2 47.1 28.2
SIFT + FVs29 45.7 25.7
CNN 37.5 17.0

Table 1. Comparison of results on ILSVRC-2010 test set.

In italics are best results achieved by others.

e The error rates without averaging predictions over 10 patches as described 
in Section 5.1 are 39.0% and 18.3%.

Model Top-1 (val, %) Top-5 (val, %) Top-5 (test, %)

SIFT + FVs6 – – 26.2
1 CNN 40.7 18.2 –
5 CNNs 38.1 16.4 16.4
1 CNN* 39.0 16.6 –
7 CNNs* 36.7 15.4 15.3

Table 2. Comparison of error rates on ILSVRC-2012 validation and test sets.

In italics are best results achieved by others. Models with an “*” were “pre-trained” to classify 
the entire ImageNet 2011 Fall release (see Section 7 for details).
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color-specific. This kind of specialization occurs during every 
run and is independent of any particular random weight ini-
tialization (modulo a renumbering of the GPUs).

In the left panel of Figure 4 we qualitatively assess what the 
network has learned by computing its top-5 predictions on 
eight test images. Notice that even off-center objects, such as 
the mite in the top-left, can be recognized by the net. Most of 
the top-5 labels appear reasonable. For example, only other 
types of cat are considered plausible labels for the leopard. In 
some cases (grille, cherry) there is genuine ambiguity about 
the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to 
consider the feature activations induced by an image at the 
last, 4096-dimensional hidden layer. If two images produce 
feature activation vectors with a small Euclidean separation, 
we can say that the higher levels of the neural network con-
sider them to be similar. Figure 4 shows five images from the 
test set and the six images from the training set that are most 
similar to each of them according to this measure. Notice that 
at the pixel level, the retrieved training images are generally 
not close in L2 to the query images in the first column. For 
example, the retrieved dogs and elephants appear in a variety 

error rates for all the models that we tried. In the remainder of 
this paragraph, we use validation and test error rates inter-
changeably because in our experience they do not differ by 
more than 0.1% (see Table 2). The CNN described in this 
paper achieves a top-5 error rate of 18.2%. Averaging the pre-
dictions of five similar CNNs gives an error rate of 16.4%. 
Training one CNN, with an extra sixth convolutional layer 
over the last pooling layer, to classify the entire ImageNet Fall 
2011 release (15M images, 22K categories), and then “fine-
tuning” it on ILSVRC-2012 gives an error rate of 16.6%. 
Averaging the predictions of two CNNs that were pre-trained 
on the entire Fall 2011 release with the afore mentioned five 
CNNs gives an error rate of 15.3%. The second-best contest 
entry achieved an error rate of 26.2% with an approach that 
averages the predictions of several classifiers trained on FVs 
computed from different types of densely sampled features.6

Finally, we also report our error rates on the Fall 2009 ver-
sion of ImageNet with 10,184 categories and 8.9 million 
images. On this dataset we follow the convention in the litera-
ture of using half of the images for training and half for test-
ing. Since there is no established test set, our split necessarily 
differs from the splits used by previous authors, but this does 
not affect the results appreciably. Our top-1 and top-5 error 
rates on this dataset are 67.4% and 40.9%, attained by the net 
described above but with an additional, sixth convolutional 
layer over the last pooling layer. The best published results on 
this dataset are 78.1% and 60.9%.23

7.1. Qualitative evaluations
Figure 3 shows the convolutional kernels learned by the net-
work’s two data-connected layers. The network has learned a 
variety of frequency- and orientation-selective kernels, as well 
as various colored blobs. Notice the specialization exhibited 
by the two GPUs, a result of the restricted connectivity 
described in Section 4.5. The kernels on GPU 1 are largely 
color-agnostic, while the kernels on on GPU 2 are largely 

Figure 3. Ninety-six convolutional kernels of size 11 × 11 × 3 learned 
by the first convolutional layer on the 224 × 224 × 3 input images. 
The top 48 kernels were learned on GPU 1 while the bottom 48 
kernels were learned on GPU 2 (see Section 7.1 for details).

Figure 4. (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model. The correct label is written 
under each image, and the probability assigned to the correct label is also shown with a red bar (if it happens to be in the top 5). (Right) Five 
ILSVRC-2010 test images in the first column. The remaining columns show the six training images that produce feature vectors in the last 
hidden layer with the smallest Euclidean distance from the feature vector for the test image.
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of poses. We present the results for many more test images in 
the supplementary material.

Computing similarity by using Euclidean distance 
between two 4096-dimensional, real-valued vectors is ineffi-
cient, but it could be made efficient by training an auto 
encoder to compress these vectors to short binary codes. This 
should produce a much better image retrieval method than 
applying auto encoders to the raw pixels,16 which does not 
make use of image labels and hence has a tendency to retrieve 
images with similar patterns of edges, whether or not they are 
semantically similar.

8. DISCUSSION
Our results show that a large, deep CNN is capable of achieving 
record-breaking results on a highly challenging dataset using 
purely supervised learning. It is notable that our network’s per-
formance degrades if a single convolutional layer is removed. 
For example, removing any of the middle layers results in a loss 
of about 2% for the top-1 performance of the network. So the 
depth really is important for achieving our results.

To simplify our experiments, we did not use any unsuper-
vised pre-training even though we expect that it will help, espe-
cially if we obtain enough computational power to significantly 
increase the size of the network without obtaining a corre-
sponding increase in the amount of labeled data. Thus far, our 
results have improved as we have made our network larger and 
trained it longer but we still have many orders of magnitude to 
go in order to match the infero temporal pathway of the human 
visual system. Ultimately we would like to use very large and 
deep convolutional nets on video sequences where the tempo-
ral structure provides very helpful information, that is, missing 
or far less obvious in static images.

9. EPILOGUE
The response of the computer vision community to the suc-
cess of SuperVision was impressive. Over the next year or two, 
they switched to using deep neural networks and these are 
now widely deployed by Google, Facebook, Microsoft, Baidu 
and many other companies. By 2015, better hardware, more 
hidden layers, and a host of technical advances reduced the 
error rate of deep convolutional neural nets by a further factor 
of three so that they are now quite close to human perfor-
mance for static images.11, 31 Much of the credit for this revolu-
tion should go to the pioneers who spent many years 
developing the technology of CNNs, but the essential missing 
ingredient was supplied by FeiFei et al.7 who put a huge effort 
into producing a labeled dataset that was finally large enough 
to show what neural networks could really do. 
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 4. Cireşan, D., Meier, U., Masci, J., 
Gambardella, L., Schmidhuber, J. 
High-performance neural networks for 

visual object classification. Arxiv 
preprint arXiv:1102.0183, 2011.
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