Ledoit-Wolf-OAS / app.py
Jayabalambika's picture
Update app.py
5aaee68
raw
history blame contribute delete
No virus
4.92 kB
import gradio as gr
import time
import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import toeplitz, cholesky
from sklearn.covariance import LedoitWolf, OAS
np.random.seed(0)
def plot_mse(min_slider_samples_range,max_slider_samples_range):
# plot MSE
print("inside plot_mse")
plt.clf()
plt.subplot(2, 1, 1)
plt.errorbar(
slider_samples_range,
lw_mse.mean(1),
yerr=lw_mse.std(1),
label="Ledoit-Wolf",
color="navy",
lw=2,
)
plt.errorbar(
slider_samples_range,
oa_mse.mean(1),
yerr=oa_mse.std(1),
label="OAS",
color="darkorange",
lw=2,
)
plt.ylabel("Squared error")
plt.legend(loc="upper right")
plt.title("Comparison of covariance estimators")
plt.xlim(5, 31)
print("outside plot_mse")
return plt
def plot_shrinkage(min_slider_samples_range,max_slider_samples_range):
# plot shrinkage coefficient
print("inside plot_shrink")
plt.clf()
plt.subplot(2, 1, 2)
plt.errorbar(
slider_samples_range,
lw_shrinkage.mean(1),
yerr=lw_shrinkage.std(1),
label="Ledoit-Wolf",
color="navy",
lw=2,
)
plt.errorbar(
slider_samples_range,
oa_shrinkage.mean(1),
yerr=oa_shrinkage.std(1),
label="OAS",
color="darkorange",
lw=2,
)
plt.xlabel("n_samples")
plt.ylabel("Shrinkage")
plt.legend(loc="lower right")
plt.ylim(plt.ylim()[0], 1.0 + (plt.ylim()[1] - plt.ylim()[0]) / 10.0)
plt.xlim(5, 31)
print("outside plot_shrink")
# plt.show()
return plt
title = "Ledoit-Wolf vs OAS estimation"
with gr.Blocks(title=title, theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo:
gr.Markdown(f"# {title}")
gr.Markdown(
"""
The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the Ledoit-Wolf covariance estimate.
Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence is significantly better under the assumption that the data are Gaussian.
This example, inspired from Chen’s publication [1], shows a comparison of the estimated MSE of the LW and OAS methods, using Gaussian distributed data.
[1] “Shrinkage Algorithms for MMSE Covariance Estimation” Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.
""")
n_features = 100
min_slider_samples_range = gr.Slider(6, 31, value=6, step=1, label="min_samples_range", info="Choose between 6 and 31")
max_slider_samples_range = gr.Slider(6, 31, value=31, step=1, label="max_samples_range", info="Choose between 6 and 31")
print("min_slider_samples_range=",min_slider_samples_range.value)
print("max_slider_samples_range=",max_slider_samples_range.value)
low = min_slider_samples_range.value
high = max_slider_samples_range.value
###### initialisation code
slider_samples_range =np.arange(low, high,1)
n_features = 100
repeat = 100
lw_mse = np.zeros((slider_samples_range.size, repeat))
oa_mse = np.zeros((slider_samples_range.size, repeat))
lw_shrinkage = np.zeros((slider_samples_range.size, repeat))
oa_shrinkage = np.zeros((slider_samples_range.size, repeat))
r = 0.1
real_cov = toeplitz(r ** np.arange(n_features))
coloring_matrix = cholesky(real_cov)
for i, n_samples in enumerate(slider_samples_range):
for j in range(repeat):
X = np.dot(np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)
lw = LedoitWolf(store_precision=False, assume_centered=True)
lw.fit(X)
lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
lw_shrinkage[i, j] = lw.shrinkage_
oa = OAS(store_precision=False, assume_centered=True)
oa.fit(X)
oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
oa_shrinkage[i, j] = oa.shrinkage_
gr.Markdown(" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/covariance/plot_lw_vs_oas.html)**")
gr.Markdown("Changing the min_samples_range values and the MSE plot changes")
gr.Markdown("Changing the max_samples_range values and the Shrinkage plot changes")
gr.Label(value="Comparison of Covariance Estimators")
min_slider_samples_range.change(plot_mse, inputs=[min_slider_samples_range,max_slider_samples_range], outputs= gr.Plot() )
max_slider_samples_range.change(plot_shrinkage, inputs=[min_slider_samples_range,max_slider_samples_range], outputs= gr.Plot() )
demo.launch()