3DOI / monoarti /mesh_utils.py
shengyi-qian's picture
init
9afcee2
raw
history blame contribute delete
No virus
18.5 kB
import numpy as np
import torch
import torch.nn.functional as F
import collections
from collections import defaultdict
import cv2
import random
import math
import quaternion
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh import TexturesVertex, TexturesUV, Textures
import os
import shutil
import imageio
from typing import Optional, List
def triangulate_pcd(sem_mask, semantic_pred, render_size, border_size):
#verts = torch.ones(render_size).nonzero().numpy()
verts = sem_mask.nonzero().numpy()
vert_id_map = defaultdict(dict)
for idx, vert in enumerate(verts):
vert_id_map[vert[0]][vert[1]] = idx# + len(verts)
height = render_size[0] - border_size * 2
width = render_size[1] - border_size * 2
semantic_pred = semantic_pred.numpy()
triangles = []
for vert in verts:
# upper right triangle
if (
vert[0] < height - 1
and vert[1] < width - 1
and sem_mask[vert[0] + 1][vert[1] + 1]
and sem_mask[vert[0]][vert[1] + 1]
and semantic_pred[vert[0]][vert[1]] == semantic_pred[vert[0] + 1][vert[1] + 1]
and semantic_pred[vert[0]][vert[1]] == semantic_pred[vert[0]][vert[1] + 1]
):
triangles.append(
[
vert_id_map[vert[0]][vert[1]],
vert_id_map[vert[0] + 1][vert[1] + 1],
vert_id_map[vert[0]][vert[1] + 1],
]
)
# bottom left triangle
if (
vert[0] < height - 1
and vert[1] < width - 1
and sem_mask[vert[0] + 1][vert[1] + 1]
and sem_mask[vert[0]][vert[1] + 1]
and semantic_pred[vert[0]][vert[1]] == semantic_pred[vert[0] + 1][vert[1]]
and semantic_pred[vert[0]][vert[1]] == semantic_pred[vert[0] + 1][vert[1] + 1]
):
triangles.append(
[
vert_id_map[vert[0]][vert[1]],
vert_id_map[vert[0] + 1][vert[1]],
vert_id_map[vert[0] + 1][vert[1] + 1],
]
)
triangles = np.array(triangles)
triangles = torch.LongTensor(triangles)
return triangles
def get_pcd(verts, normal, offset, h=480, w=640, focal_length=517.97):
"""
Copy from
https://github.com/JasonQSY/Articulation3D/blob/master/articulation3d/articulation3d/utils/vis.py
convert 2d verts to 3d point cloud based on plane normal and offset
depth = offset / n \dot K^{-1}q
"""
offset_x = w/2
offset_y = h/2
K = [[focal_length, 0, offset_x],
[0, focal_length, offset_y],
[0, 0, 1]]
K_inv = np.linalg.inv(np.array(K))
homogeneous = np.hstack((verts, np.ones(len(verts)).reshape(-1,1)))
ray = K_inv@homogeneous.T
depth = offset / np.dot(normal, ray)
pcd = depth.reshape(-1,1) * ray.T
#import pdb; pdb.set_trace()
return pcd
def fit_homography(src_pts, tgt_pts):
"""
Fit a homography from src_pts to tgt_pts.
src_pts: torch.LongTensor shape (N x 2)
tgt_pts: torch.LongTensor shape (N x 2)
"""
src_pts = src_pts.numpy().astype(np.float32)
tgt_pts = tgt_pts.numpy().astype(np.float32)
N = 4
# randomly pick up 4 control points
#ids = random.sample(range(src_pts.shape[0]), 4)
#src_pts =
#import pdb; pdb.set_trace()
H, mask = cv2.findHomography(src_pts, tgt_pts, cv2.RANSAC, 5.0)
#H = cv2.getPerspectiveTransform(obj_mask.nonzero().cpu().numpy().astype(np.float32), pts_reproj[1].numpy().astype(np.float32))
return H
def create_cylinder_mesh(radius, p0, p1, stacks=10, slices=10):
def compute_length_vec3(vec3):
return math.sqrt(vec3[0]*vec3[0] + vec3[1]*vec3[1] + vec3[2]*vec3[2])
def rotation(axis, angle):
rot = np.eye(4)
c = np.cos(-angle)
s = np.sin(-angle)
t = 1.0 - c
axis /= compute_length_vec3(axis)
x = axis[0]
y = axis[1]
z = axis[2]
rot[0,0] = 1 + t*(x*x-1)
rot[0,1] = z*s+t*x*y
rot[0,2] = -y*s+t*x*z
rot[1,0] = -z*s+t*x*y
rot[1,1] = 1+t*(y*y-1)
rot[1,2] = x*s+t*y*z
rot[2,0] = y*s+t*x*z
rot[2,1] = -x*s+t*y*z
rot[2,2] = 1+t*(z*z-1)
return rot
verts = []
indices = []
diff = (p1 - p0).astype(np.float32)
height = compute_length_vec3(diff)
for i in range(stacks+1):
for i2 in range(slices):
theta = i2 * 2.0 * math.pi / slices
pos = np.array([radius*math.cos(theta), radius*math.sin(theta), height*i/stacks])
verts.append(pos)
for i in range(stacks):
for i2 in range(slices):
i2p1 = math.fmod(i2 + 1, slices)
indices.append( np.array([(i + 1)*slices + i2, i*slices + i2, i*slices + i2p1], dtype=np.uint32) )
indices.append( np.array([(i + 1)*slices + i2, i*slices + i2p1, (i + 1)*slices + i2p1], dtype=np.uint32) )
transform = np.eye(4)
va = np.array([0, 0, 1], dtype=np.float32)
vb = diff
vb /= compute_length_vec3(vb)
axis = np.cross(vb, va)
angle = np.arccos(np.clip(np.dot(va, vb), -1, 1))
if angle != 0:
if compute_length_vec3(axis) == 0:
dotx = va[0]
if (math.fabs(dotx) != 1.0):
axis = np.array([1,0,0]) - dotx * va
else:
axis = np.array([0,1,0]) - va[1] * va
axis /= compute_length_vec3(axis)
transform = rotation(axis, -angle)
transform[:3,3] += p0
verts = [np.dot(transform, np.array([v[0], v[1], v[2], 1.0])) for v in verts]
verts = [np.array([v[0], v[1], v[2]]) / v[3] for v in verts]
return verts, indices
def create_arrow_mesh(radius, p0, p1, stacks=10, slices=10, arrow_height=0):
def compute_length_vec3(vec3):
return math.sqrt(vec3[0]*vec3[0] + vec3[1]*vec3[1] + vec3[2]*vec3[2])
def rotation(axis, angle):
rot = np.eye(4)
c = np.cos(-angle)
s = np.sin(-angle)
t = 1.0 - c
axis /= compute_length_vec3(axis)
x = axis[0]
y = axis[1]
z = axis[2]
rot[0,0] = 1 + t*(x*x-1)
rot[0,1] = z*s+t*x*y
rot[0,2] = -y*s+t*x*z
rot[1,0] = -z*s+t*x*y
rot[1,1] = 1+t*(y*y-1)
rot[1,2] = x*s+t*y*z
rot[2,0] = y*s+t*x*z
rot[2,1] = -x*s+t*y*z
rot[2,2] = 1+t*(z*z-1)
return rot
verts = []
indices = []
diff = (p1 - p0).astype(np.float32)
height = compute_length_vec3(diff)
for i in range(stacks+2):
if i == stacks+1:
# arrow tip
cur_radius = 0
cur_height = height
elif i == stacks:
# arrow base
cur_radius = radius*3
cur_height = height * (1-arrow_height) * (i-1)/stacks
else:
# cylinder
cur_radius = radius
cur_height = height * (1-arrow_height) * i/stacks
for i2 in range(slices):
theta = i2 * 2.0 * math.pi / slices
pos = np.array([cur_radius*math.cos(theta), cur_radius*math.sin(theta), cur_height])
verts.append(pos)
for i in range(stacks+1):
for i2 in range(slices):
i2p1 = math.fmod(i2 + 1, slices)
indices.append( np.array([(i + 1)*slices + i2, i*slices + i2, i*slices + i2p1], dtype=np.uint32) )
indices.append( np.array([(i + 1)*slices + i2, i*slices + i2p1, (i + 1)*slices + i2p1], dtype=np.uint32) )
transform = np.eye(4)
va = np.array([0, 0, 1], dtype=np.float32)
vb = diff
vb /= compute_length_vec3(vb)
axis = np.cross(vb, va)
angle = np.arccos(np.clip(np.dot(va, vb), -1, 1))
if angle != 0:
if compute_length_vec3(axis) == 0:
dotx = va[0]
if (math.fabs(dotx) != 1.0):
axis = np.array([1,0,0]) - dotx * va
else:
axis = np.array([0,1,0]) - va[1] * va
axis /= compute_length_vec3(axis)
transform = rotation(axis, -angle)
transform[:3,3] += p0
verts = [np.dot(transform, np.array([v[0], v[1], v[2], 1.0])) for v in verts]
verts = [np.array([v[0], v[1], v[2]]) / v[3] for v in verts]
return verts, indices
def get_camera_meshes(camera_list, radius=0.02):
verts_list = []
faces_list = []
color_list = []
rots = np.array([quaternion.as_rotation_matrix(camera_info['rotation']) for camera_info in camera_list])
# ai habitat frame
lookat = np.array([0,0,-1])
vertical = np.array([0,1,0])
positions = np.array([camera_info['position'] for camera_info in camera_list])
lookats = rots@lookat.T
verticals = rots@vertical.T
predetermined_color = [
[0.10196, 0.32157, 1.0],
[1.0, 0.0667, 0.1490],# [0.8314, 0.0667, 0.3490],
# [0.0, 0.4392156862745098, 0.7529411764705882],
# [0.3764705882352941, 0.08627450980392155, 0.47843137254901963],
]
for idx, (position, lookat, vertical, color) in enumerate(zip(positions, lookats, verticals, predetermined_color)):
cur_num_verts = 0
# r, g, b = create_color_palette()[idx+10]
edges = get_cone_edges(position, lookat, vertical)
# color = [r/255.0,g/255.0,b/255.0]
cam_verts = []
cam_inds = []
for k in range(len(edges)):
cyl_verts, cyl_ind = create_cylinder_mesh(radius, edges[k][0], edges[k][1])
cyl_verts = [x for x in cyl_verts]
cyl_ind = [x + cur_num_verts for x in cyl_ind]
cur_num_verts += len(cyl_verts)
cam_verts.extend(cyl_verts)
cam_inds.extend(cyl_ind)
# Create a textures object
verts_list.append(torch.tensor(cam_verts, dtype=torch.float32))
faces_list.append(torch.tensor(cam_inds, dtype=torch.float32))
color_list.append(color)
color_tensor = torch.tensor(color_list, dtype=torch.float32).unsqueeze_(1)
#tex = Textures(verts_uvs=None, faces_uvs=None, verts_rgb=color_tensor)
tex = TexturesVertex(verts_features=color_tensor)
# Initialise the mesh with textures
meshes = Meshes(verts=verts_list, faces=faces_list, textures=tex)
return meshes
def get_cone_edges(position, lookat, vertical):
def get_cone_verts(position, lookat, vertical):
vertical = np.array(vertical) / np.linalg.norm(vertical)
lookat = np.array(lookat) / np.linalg.norm(lookat)
right = np.cross(np.array(lookat), np.array(vertical))
right = right / np.linalg.norm(right)
top = np.cross(right, lookat)
top = top / np.linalg.norm(top)
right *= .4
lookat *= .4
top *= .1
verts = {
'topR': position + lookat + top + right,
'topL': position + lookat + top - right,
'center': position,
'bottomR': position + lookat - top + right,
'bottomL': position + lookat - top - right,
}
return verts
cone_verts = get_cone_verts(position, lookat, vertical)
edges = [
(cone_verts['center'], cone_verts['topR']),
(cone_verts['center'], cone_verts['topL']),
(cone_verts['center'], cone_verts['bottomR']),
(cone_verts['center'], cone_verts['bottomL']),
(cone_verts['topR'], cone_verts['topL']),
(cone_verts['bottomR'], cone_verts['topR']),
(cone_verts['bottomR'], cone_verts['bottomL']),
(cone_verts['topL'], cone_verts['bottomL']),
]
return edges
def get_axis_mesh(radius, pt1, pt2):
verts_list = []
faces_list = []
color_list = []
cyl_verts, cyl_ind = create_arrow_mesh(radius, pt1.numpy(), pt2.numpy())
cyl_verts = [x for x in cyl_verts]
cyl_ind = [x for x in cyl_ind]
# Create a textures object
verts_list.append(torch.tensor(cyl_verts, dtype=torch.float32))
faces_list.append(torch.tensor(cyl_ind, dtype=torch.float32))
# color_list.append([0.10196, 0.32157, 1.0])
# color_tensor = torch.tensor(color_list, dtype=torch.float32).unsqueeze_(1)
# Textures(verts_uvs=axis_verts_rgb, faces_uvs=axis_pt1.faces_list(), maps=torch.zeros((1,5,5,3)).cuda())
# tex = TexturesVertex(verts_features=color_tensor)
# Initialise the mesh with textures
meshes = Meshes(verts=verts_list, faces=faces_list)
return meshes
def save_obj_articulation(folder, prefix, meshes, cam_meshes=None, decimal_places=None, blend_flag=False, map_files=None, uv_maps=None):
os.makedirs(folder, exist_ok=True)
# pytorch3d does not support map_files
#map_files = meshes.textures.map_files()
#assert map_files is not None
if map_files is None and uv_maps is None:
raise RuntimeError("either map_files or uv_maps should be set!")
# generate map_files from uv_map
if uv_maps is not None and map_files is None:
map_files = []
uv_dir = os.path.join(folder, 'uv_maps')
if not os.path.exists(uv_dir):
os.mkdir(uv_dir)
for map_id, uv_map in enumerate(uv_maps):
uv_path = os.path.join(uv_dir, '{}_uv_plane_{}.png'.format(prefix, map_id))
#pdb.set_trace()
imageio.imwrite(uv_path, uv_map)
map_files.append(uv_path)
#pdb.set_trace()
f_mtl = open(os.path.join(folder, prefix+'.mtl'), 'w')
f = open(os.path.join(folder, prefix+'.obj'), 'w')
try:
seen = set()
uniq_map_files = [m for m in list(map_files) if m not in seen and not seen.add(m)]
for map_id, map_file in enumerate(uniq_map_files):
if uv_maps is not None:
# we do not need to copy map_files,
# they are already in uv_maps/...
f_mtl.write(_get_mtl_map(
os.path.basename(map_file).split('.')[0],
os.path.join('uv_maps', os.path.basename(map_file))
))
continue
if not blend_flag:
shutil.copy(map_file, folder)
os.chmod(os.path.join(folder, os.path.basename(map_file)), 0o755)
f_mtl.write(_get_mtl_map(os.path.basename(map_file).split('.')[0], os.path.basename(map_file)))
else:
rgb = cv2.imread(map_file, cv2.IMREAD_COLOR)
if cam_meshes is not None:
blend_color = np.array(cam_meshes.textures.verts_features_packed().numpy().tolist()[map_id])*255
else:
blend_color = np.array(create_color_palette()[map_id+10])
alpha = 0.7
blend = (rgb*alpha + blend_color[::-1]*(1-alpha)).astype(np.uint8)
cv2.imwrite(os.path.join(folder, os.path.basename(map_file).split('.')[0]+'_debug.png'), blend)
f_mtl.write(_get_mtl_map(os.path.basename(map_file).split('.')[0], os.path.basename(map_file).split('.')[0]+'_debug.png'))
f.write(f"mtllib {prefix}.mtl\n\n")
# we want [list] verts, vert_uvs, map_files;
# [packed] faces;
# face per mesh
verts_list = meshes.verts_list()
verts_uvs_list = meshes.textures.verts_uvs_list()
faces_list = meshes.faces_packed().split(meshes.num_faces_per_mesh().tolist(), dim=0)
#pdb.set_trace()
for idx, (verts, verts_uvs, faces, map_file) in enumerate(zip(verts_list, verts_uvs_list, faces_list, map_files)):
f.write(f"# mesh {idx}\n")
trunc_verts_uvs = verts_uvs[:verts.shape[0]]
_save(f, verts, faces, verts_uv=trunc_verts_uvs, map_file=map_file, idx=idx, decimal_places=decimal_places)
if cam_meshes:
face_offset = np.sum([len(v) for v in verts_list])
cam_verts_list = cam_meshes.verts_list()
cam_verts_rgbs_list = cam_meshes.textures.verts_features_packed().numpy().tolist()
cam_faces_list = (cam_meshes.faces_packed()+face_offset).split(cam_meshes.num_faces_per_mesh().tolist(), dim=0)
assert(len(cam_verts_rgbs_list) == len(cam_verts_list))
for idx, (verts, faces, rgb) in enumerate(zip(cam_verts_list, cam_faces_list, cam_verts_rgbs_list)):
f.write(f"# camera {idx}\n")
f_mtl.write(_get_mtl_rgb(idx, rgb))
_save(f, verts, faces, rgb=rgb, idx=idx, decimal_places=decimal_places)
finally:
f.close()
f_mtl.close()
def _get_mtl_map(material_name, map_Kd):
return f"""newmtl {material_name}
map_Kd {map_Kd}
# Test colors
Ka 1.000 1.000 1.000 # white
Kd 1.000 1.000 1.000 # white
Ks 0.000 0.000 0.000 # black
Ns 10.0\n"""
def _get_mtl_rgb(material_idx, rgb):
return f"""newmtl color_{material_idx}
Kd {rgb[0]} {rgb[1]} {rgb[2]}
Ka 0.000 0.000 0.000\n"""
def _save(f, verts, faces, verts_uv=None, map_file=None, rgb=None, idx=None, double_sided=True, decimal_places: Optional[int] = None):
if decimal_places is None:
float_str = "%f"
else:
float_str = "%" + ".%df" % decimal_places
lines = ""
V, D = verts.shape
for i in range(V):
vert = [float_str % verts[i, j] for j in range(D)]
lines += "v %s\n" % " ".join(vert)
if verts_uv is not None:
V, D = verts_uv.shape
for i in range(V):
vert_uv = [float_str % verts_uv[i, j] for j in range(D)]
lines += "vt %s\n" % " ".join(vert_uv)
if map_file is not None:
lines += f"usemtl {os.path.basename(map_file).split('.')[0]}\n"
elif rgb is not None:
lines += f"usemtl color_{idx}\n"
if faces != []:
F, P = faces.shape
for i in range(F):
if verts_uv is not None:
face = ["%d/%d" % (faces[i, j] + 1, faces[i, j] + 1) for j in range(P)]
else:
face = ["%d" % (faces[i, j] + 1) for j in range(P)]
# if i + 1 < F:
lines += "f %s\n" % " ".join(face)
if double_sided:
if verts_uv is not None:
face = ["%d/%d" % (faces[i, j] + 1, faces[i, j] + 1) for j in reversed(range(P))]
else:
face = ["%d" % (faces[i, j] + 1) for j in reversed(range(P))]
lines += "f %s\n" % " ".join(face)
# elif i + 1 == F:
# # No newline at the end of the file.
# lines += "f %s" % " ".join(face)
else:
print(f"face = []")
f.write(lines)