File size: 18,492 Bytes
9afcee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import numpy as np
import torch
import torch.nn.functional as F
import collections
from collections import defaultdict
import cv2
import random
import math
import quaternion
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh import TexturesVertex, TexturesUV, Textures
import os
import shutil
import imageio
from typing import Optional, List


def triangulate_pcd(sem_mask, semantic_pred, render_size, border_size):
    #verts = torch.ones(render_size).nonzero().numpy()
    verts = sem_mask.nonzero().numpy()
    vert_id_map = defaultdict(dict)
    for idx, vert in enumerate(verts):
        vert_id_map[vert[0]][vert[1]] = idx# + len(verts)

    height = render_size[0] - border_size * 2
    width = render_size[1] - border_size * 2

    semantic_pred = semantic_pred.numpy()

    triangles = []
    for vert in verts:
        # upper right triangle
        if (
            vert[0] < height - 1
            and vert[1] < width - 1
            and sem_mask[vert[0] + 1][vert[1] + 1]
            and sem_mask[vert[0]][vert[1] + 1]
            and semantic_pred[vert[0]][vert[1]] == semantic_pred[vert[0] + 1][vert[1] + 1]
            and semantic_pred[vert[0]][vert[1]] == semantic_pred[vert[0]][vert[1] + 1]
        ):
            triangles.append(
                [
                    vert_id_map[vert[0]][vert[1]],
                    vert_id_map[vert[0] + 1][vert[1] + 1],
                    vert_id_map[vert[0]][vert[1] + 1],
                ]
            )
        # bottom left triangle
        if (
            vert[0] < height - 1
            and vert[1] < width - 1
            and sem_mask[vert[0] + 1][vert[1] + 1]
            and sem_mask[vert[0]][vert[1] + 1]
            and semantic_pred[vert[0]][vert[1]] == semantic_pred[vert[0] + 1][vert[1]]
            and semantic_pred[vert[0]][vert[1]] == semantic_pred[vert[0] + 1][vert[1] + 1]
        ):
            triangles.append(
                [
                    vert_id_map[vert[0]][vert[1]],
                    vert_id_map[vert[0] + 1][vert[1]],
                    vert_id_map[vert[0] + 1][vert[1] + 1],
                ]
            )
    triangles = np.array(triangles)
    triangles = torch.LongTensor(triangles)

    return triangles


def get_pcd(verts, normal, offset, h=480, w=640, focal_length=517.97):
    """
    Copy from 
    https://github.com/JasonQSY/Articulation3D/blob/master/articulation3d/articulation3d/utils/vis.py

    convert 2d verts to 3d point cloud based on plane normal and offset
    depth = offset / n \dot K^{-1}q
    """
    offset_x = w/2
    offset_y = h/2
    K = [[focal_length, 0, offset_x],
        [0, focal_length, offset_y],
        [0, 0, 1]]
    K_inv = np.linalg.inv(np.array(K))
    homogeneous = np.hstack((verts, np.ones(len(verts)).reshape(-1,1)))
    ray = K_inv@homogeneous.T
    depth = offset / np.dot(normal, ray)
    pcd = depth.reshape(-1,1) * ray.T

    #import pdb; pdb.set_trace()
    return pcd


def fit_homography(src_pts, tgt_pts):
    """
    Fit a homography from src_pts to tgt_pts.

    src_pts: torch.LongTensor shape (N x 2)
    tgt_pts: torch.LongTensor shape (N x 2)
    
    """
    src_pts = src_pts.numpy().astype(np.float32)
    tgt_pts = tgt_pts.numpy().astype(np.float32)

    N = 4
    
    # randomly pick up 4 control points
    #ids = random.sample(range(src_pts.shape[0]), 4)
    #src_pts = 
    #import pdb; pdb.set_trace()
    H, mask = cv2.findHomography(src_pts, tgt_pts, cv2.RANSAC, 5.0)
    #H = cv2.getPerspectiveTransform(obj_mask.nonzero().cpu().numpy().astype(np.float32), pts_reproj[1].numpy().astype(np.float32))

    return H

def create_cylinder_mesh(radius, p0, p1, stacks=10, slices=10):

    def compute_length_vec3(vec3):
        return math.sqrt(vec3[0]*vec3[0] + vec3[1]*vec3[1] + vec3[2]*vec3[2])
    
    def rotation(axis, angle):
        rot = np.eye(4)
        c = np.cos(-angle)
        s = np.sin(-angle)
        t = 1.0 - c
        axis /= compute_length_vec3(axis)
        x = axis[0]
        y = axis[1]
        z = axis[2]
        rot[0,0] = 1 + t*(x*x-1)
        rot[0,1] = z*s+t*x*y
        rot[0,2] = -y*s+t*x*z
        rot[1,0] = -z*s+t*x*y
        rot[1,1] = 1+t*(y*y-1)
        rot[1,2] = x*s+t*y*z
        rot[2,0] = y*s+t*x*z
        rot[2,1] = -x*s+t*y*z
        rot[2,2] = 1+t*(z*z-1)
        return rot


    verts = []
    indices = []
    diff = (p1 - p0).astype(np.float32)
    height = compute_length_vec3(diff)
    for i in range(stacks+1):
        for i2 in range(slices):
            theta = i2 * 2.0 * math.pi / slices
            pos = np.array([radius*math.cos(theta), radius*math.sin(theta), height*i/stacks])
            verts.append(pos)
    for i in range(stacks):
        for i2 in range(slices):
            i2p1 = math.fmod(i2 + 1, slices)
            indices.append( np.array([(i + 1)*slices + i2, i*slices + i2, i*slices + i2p1], dtype=np.uint32) )
            indices.append( np.array([(i + 1)*slices + i2, i*slices + i2p1, (i + 1)*slices + i2p1], dtype=np.uint32) )
    transform = np.eye(4)
    va = np.array([0, 0, 1], dtype=np.float32)
    vb = diff
    vb /= compute_length_vec3(vb)
    axis = np.cross(vb, va)
    angle = np.arccos(np.clip(np.dot(va, vb), -1, 1))
    if angle != 0:
        if compute_length_vec3(axis) == 0:
            dotx = va[0]
            if (math.fabs(dotx) != 1.0):
                axis = np.array([1,0,0]) - dotx * va
            else:
                axis = np.array([0,1,0]) - va[1] * va
            axis /= compute_length_vec3(axis)
        transform = rotation(axis, -angle)
    transform[:3,3] += p0
    verts = [np.dot(transform, np.array([v[0], v[1], v[2], 1.0])) for v in verts]
    verts = [np.array([v[0], v[1], v[2]]) / v[3] for v in verts]
        
    return verts, indices


def create_arrow_mesh(radius, p0, p1, stacks=10, slices=10, arrow_height=0):

    def compute_length_vec3(vec3):
        return math.sqrt(vec3[0]*vec3[0] + vec3[1]*vec3[1] + vec3[2]*vec3[2])
    
    def rotation(axis, angle):
        rot = np.eye(4)
        c = np.cos(-angle)
        s = np.sin(-angle)
        t = 1.0 - c
        axis /= compute_length_vec3(axis)
        x = axis[0]
        y = axis[1]
        z = axis[2]
        rot[0,0] = 1 + t*(x*x-1)
        rot[0,1] = z*s+t*x*y
        rot[0,2] = -y*s+t*x*z
        rot[1,0] = -z*s+t*x*y
        rot[1,1] = 1+t*(y*y-1)
        rot[1,2] = x*s+t*y*z
        rot[2,0] = y*s+t*x*z
        rot[2,1] = -x*s+t*y*z
        rot[2,2] = 1+t*(z*z-1)
        return rot


    verts = []
    indices = []
    diff = (p1 - p0).astype(np.float32)
    height = compute_length_vec3(diff)
    for i in range(stacks+2):
        if i == stacks+1:
            # arrow tip
            cur_radius = 0
            cur_height = height
        elif i == stacks:
            # arrow base
            cur_radius = radius*3
            cur_height = height * (1-arrow_height) * (i-1)/stacks
        else:
            # cylinder
            cur_radius = radius
            cur_height = height * (1-arrow_height) * i/stacks
        for i2 in range(slices):
            theta = i2 * 2.0 * math.pi / slices
            pos = np.array([cur_radius*math.cos(theta), cur_radius*math.sin(theta), cur_height])
            verts.append(pos)
    for i in range(stacks+1):
        for i2 in range(slices):
            i2p1 = math.fmod(i2 + 1, slices)
            indices.append( np.array([(i + 1)*slices + i2, i*slices + i2, i*slices + i2p1], dtype=np.uint32) )
            indices.append( np.array([(i + 1)*slices + i2, i*slices + i2p1, (i + 1)*slices + i2p1], dtype=np.uint32) )
    transform = np.eye(4)
    va = np.array([0, 0, 1], dtype=np.float32)
    vb = diff
    vb /= compute_length_vec3(vb)
    axis = np.cross(vb, va)
    angle = np.arccos(np.clip(np.dot(va, vb), -1, 1))
    if angle != 0:
        if compute_length_vec3(axis) == 0:
            dotx = va[0]
            if (math.fabs(dotx) != 1.0):
                axis = np.array([1,0,0]) - dotx * va
            else:
                axis = np.array([0,1,0]) - va[1] * va
            axis /= compute_length_vec3(axis)
        transform = rotation(axis, -angle)
    transform[:3,3] += p0
    verts = [np.dot(transform, np.array([v[0], v[1], v[2], 1.0])) for v in verts]
    verts = [np.array([v[0], v[1], v[2]]) / v[3] for v in verts]
        
    return verts, indices



def get_camera_meshes(camera_list, radius=0.02):
    verts_list = []
    faces_list = []
    color_list = []
    rots = np.array([quaternion.as_rotation_matrix(camera_info['rotation']) for camera_info in camera_list])

    # ai habitat frame
    lookat = np.array([0,0,-1])
    vertical = np.array([0,1,0])

    positions = np.array([camera_info['position'] for camera_info in camera_list])
    lookats = rots@lookat.T
    verticals = rots@vertical.T
    predetermined_color = [
        [0.10196, 0.32157, 1.0],
        [1.0, 0.0667, 0.1490],# [0.8314, 0.0667, 0.3490],
        # [0.0, 0.4392156862745098, 0.7529411764705882],
        # [0.3764705882352941, 0.08627450980392155, 0.47843137254901963],
    ]
    for idx, (position, lookat, vertical, color) in enumerate(zip(positions, lookats, verticals, predetermined_color)):
        cur_num_verts = 0
        # r, g, b = create_color_palette()[idx+10]
        edges = get_cone_edges(position, lookat, vertical)
        # color = [r/255.0,g/255.0,b/255.0]
        cam_verts = []
        cam_inds = []
        for k in range(len(edges)):
            cyl_verts, cyl_ind = create_cylinder_mesh(radius, edges[k][0], edges[k][1])
            cyl_verts = [x for x in cyl_verts]
            cyl_ind = [x + cur_num_verts for x in cyl_ind]
            cur_num_verts += len(cyl_verts)
            cam_verts.extend(cyl_verts)
            cam_inds.extend(cyl_ind)
        # Create a textures object
        verts_list.append(torch.tensor(cam_verts, dtype=torch.float32))
        faces_list.append(torch.tensor(cam_inds, dtype=torch.float32))
        color_list.append(color)

    color_tensor = torch.tensor(color_list, dtype=torch.float32).unsqueeze_(1)
    #tex = Textures(verts_uvs=None, faces_uvs=None, verts_rgb=color_tensor)
    tex = TexturesVertex(verts_features=color_tensor)

    # Initialise the mesh with textures
    meshes = Meshes(verts=verts_list, faces=faces_list, textures=tex)
    return meshes


def get_cone_edges(position, lookat, vertical):
    def get_cone_verts(position, lookat, vertical):
        vertical = np.array(vertical) / np.linalg.norm(vertical)
        lookat = np.array(lookat) / np.linalg.norm(lookat)
        right = np.cross(np.array(lookat), np.array(vertical))
        right = right / np.linalg.norm(right)
        top = np.cross(right, lookat)
        top = top / np.linalg.norm(top)

        right *= .4
        lookat *= .4
        top *= .1
        verts = {
            'topR': position + lookat + top + right,
            'topL': position + lookat + top - right,
            'center': position,
            'bottomR': position + lookat - top + right,
            'bottomL': position + lookat - top - right,
        }
        return verts

    cone_verts = get_cone_verts(position, lookat, vertical)
    edges = [
        (cone_verts['center'], cone_verts['topR']),
        (cone_verts['center'], cone_verts['topL']),
        (cone_verts['center'], cone_verts['bottomR']),
        (cone_verts['center'], cone_verts['bottomL']),
        (cone_verts['topR'], cone_verts['topL']),
        (cone_verts['bottomR'], cone_verts['topR']),
        (cone_verts['bottomR'], cone_verts['bottomL']),
        (cone_verts['topL'], cone_verts['bottomL']),
    ]
    return edges




def get_axis_mesh(radius, pt1, pt2):
    verts_list = []
    faces_list = []
    color_list = []
    cyl_verts, cyl_ind = create_arrow_mesh(radius, pt1.numpy(), pt2.numpy())
    cyl_verts = [x for x in cyl_verts]
    cyl_ind = [x for x in cyl_ind]

    # Create a textures object
    verts_list.append(torch.tensor(cyl_verts, dtype=torch.float32))
    faces_list.append(torch.tensor(cyl_ind, dtype=torch.float32))
    # color_list.append([0.10196, 0.32157, 1.0])
    # color_tensor = torch.tensor(color_list, dtype=torch.float32).unsqueeze_(1)
    # Textures(verts_uvs=axis_verts_rgb, faces_uvs=axis_pt1.faces_list(), maps=torch.zeros((1,5,5,3)).cuda())
    # tex = TexturesVertex(verts_features=color_tensor)

    # Initialise the mesh with textures
    meshes = Meshes(verts=verts_list, faces=faces_list)
    return meshes


def save_obj_articulation(folder, prefix, meshes, cam_meshes=None, decimal_places=None, blend_flag=False, map_files=None, uv_maps=None):
    os.makedirs(folder, exist_ok=True)

    # pytorch3d does not support map_files
    #map_files = meshes.textures.map_files()
    #assert map_files is not None
    if map_files is None and uv_maps is None:
        raise RuntimeError("either map_files or uv_maps should be set!")

    # generate map_files from uv_map
    if uv_maps is not None and map_files is None:
        map_files = []
        uv_dir = os.path.join(folder, 'uv_maps')
        if not os.path.exists(uv_dir):
            os.mkdir(uv_dir)
        for map_id, uv_map in enumerate(uv_maps):
            uv_path = os.path.join(uv_dir, '{}_uv_plane_{}.png'.format(prefix, map_id))
            #pdb.set_trace()
            imageio.imwrite(uv_path, uv_map)
            map_files.append(uv_path)

    #pdb.set_trace()

    f_mtl = open(os.path.join(folder, prefix+'.mtl'), 'w')
    f = open(os.path.join(folder, prefix+'.obj'), 'w')
    try:
        seen = set()
        uniq_map_files = [m for m in list(map_files) if m not in seen and not seen.add(m)]
        for map_id, map_file in enumerate(uniq_map_files):
            if uv_maps is not None:
                # we do not need to copy map_files,
                # they are already in uv_maps/...
                f_mtl.write(_get_mtl_map(
                    os.path.basename(map_file).split('.')[0], 
                    os.path.join('uv_maps', os.path.basename(map_file))
                ))
                continue

            if not blend_flag:
                shutil.copy(map_file, folder)
                os.chmod(os.path.join(folder, os.path.basename(map_file)), 0o755)
                f_mtl.write(_get_mtl_map(os.path.basename(map_file).split('.')[0], os.path.basename(map_file)))
            else:
                rgb = cv2.imread(map_file, cv2.IMREAD_COLOR)
                if cam_meshes is not None:
                    blend_color = np.array(cam_meshes.textures.verts_features_packed().numpy().tolist()[map_id])*255
                else:
                    blend_color = np.array(create_color_palette()[map_id+10])
                alpha = 0.7
                blend = (rgb*alpha + blend_color[::-1]*(1-alpha)).astype(np.uint8)
                cv2.imwrite(os.path.join(folder, os.path.basename(map_file).split('.')[0]+'_debug.png'), blend)
                f_mtl.write(_get_mtl_map(os.path.basename(map_file).split('.')[0], os.path.basename(map_file).split('.')[0]+'_debug.png'))
        
        f.write(f"mtllib {prefix}.mtl\n\n")
        # we want [list]    verts, vert_uvs, map_files; 
        #         [packed]  faces;
        #         face per mesh
        verts_list = meshes.verts_list()
        verts_uvs_list = meshes.textures.verts_uvs_list()
        faces_list = meshes.faces_packed().split(meshes.num_faces_per_mesh().tolist(), dim=0)
        #pdb.set_trace()
        for idx, (verts, verts_uvs, faces, map_file) in enumerate(zip(verts_list, verts_uvs_list, faces_list, map_files)):
            f.write(f"# mesh {idx}\n")
            trunc_verts_uvs = verts_uvs[:verts.shape[0]]
            _save(f, verts, faces, verts_uv=trunc_verts_uvs, map_file=map_file, idx=idx, decimal_places=decimal_places)
        if cam_meshes:
            face_offset = np.sum([len(v) for v in verts_list])
            cam_verts_list = cam_meshes.verts_list()
            cam_verts_rgbs_list = cam_meshes.textures.verts_features_packed().numpy().tolist()
            cam_faces_list = (cam_meshes.faces_packed()+face_offset).split(cam_meshes.num_faces_per_mesh().tolist(), dim=0)
            assert(len(cam_verts_rgbs_list) == len(cam_verts_list))
            for idx, (verts, faces, rgb) in enumerate(zip(cam_verts_list, cam_faces_list, cam_verts_rgbs_list)):
                f.write(f"# camera {idx}\n")
                f_mtl.write(_get_mtl_rgb(idx, rgb))
                _save(f, verts, faces, rgb=rgb, idx=idx, decimal_places=decimal_places)
    finally:
        f.close()
        f_mtl.close()


def _get_mtl_map(material_name, map_Kd):
        return f"""newmtl {material_name}
map_Kd {map_Kd}
# Test colors
Ka 1.000 1.000 1.000  # white
Kd 1.000 1.000 1.000  # white
Ks 0.000 0.000 0.000  # black
Ns 10.0\n"""


def _get_mtl_rgb(material_idx, rgb):
        return f"""newmtl color_{material_idx}
Kd {rgb[0]} {rgb[1]} {rgb[2]}
Ka 0.000 0.000 0.000\n"""


def _save(f, verts, faces, verts_uv=None, map_file=None, rgb=None, idx=None, double_sided=True, decimal_places: Optional[int] = None):
    if decimal_places is None:
        float_str = "%f"
    else:
        float_str = "%" + ".%df" % decimal_places

    lines = ""
    
    V, D = verts.shape
    for i in range(V):
        vert = [float_str % verts[i, j] for j in range(D)]
        lines += "v %s\n" % " ".join(vert)

    if verts_uv is not None:
        V, D = verts_uv.shape
        for i in range(V):
            vert_uv = [float_str % verts_uv[i, j] for j in range(D)]
            lines += "vt %s\n" % " ".join(vert_uv)

    if map_file is not None:
        lines += f"usemtl {os.path.basename(map_file).split('.')[0]}\n"
    elif rgb is not None:
        lines += f"usemtl color_{idx}\n"    

    if faces != []:
        F, P = faces.shape
        for i in range(F):
            if verts_uv is not None:
                face = ["%d/%d" % (faces[i, j] + 1, faces[i, j] + 1) for j in range(P)]
            else:
                face = ["%d" % (faces[i, j] + 1) for j in range(P)]
            # if i + 1 < F:
            lines += "f %s\n" % " ".join(face)
            if double_sided:
                if verts_uv is not None:
                    face = ["%d/%d" % (faces[i, j] + 1, faces[i, j] + 1) for j in reversed(range(P))]
                else:
                    face = ["%d" % (faces[i, j] + 1) for j in reversed(range(P))]
                lines += "f %s\n" % " ".join(face)
            # elif i + 1 == F:
            #     # No newline at the end of the file.
            #     lines += "f %s" % " ".join(face)
    else:
        print(f"face = []")
    f.write(lines)