# video VAE with many components from lots of repos # collected by lvmin import torch import xformers.ops import torch.nn as nn from einops import rearrange, repeat from diffusers_vdm.basics import default, exists, zero_module, conv_nd, linear, normalization from diffusers_vdm.unet import Upsample, Downsample from huggingface_hub import PyTorchModelHubMixin def chunked_attention(q, k, v, batch_chunk=0): # if batch_chunk > 0 and not torch.is_grad_enabled(): # batch_size = q.size(0) # chunks = [slice(i, i + batch_chunk) for i in range(0, batch_size, batch_chunk)] # # out_chunks = [] # for chunk in chunks: # q_chunk = q[chunk] # k_chunk = k[chunk] # v_chunk = v[chunk] # # out_chunk = torch.nn.functional.scaled_dot_product_attention( # q_chunk, k_chunk, v_chunk, attn_mask=None # ) # out_chunks.append(out_chunk) # # out = torch.cat(out_chunks, dim=0) # else: # out = torch.nn.functional.scaled_dot_product_attention( # q, k, v, attn_mask=None # ) out = xformers.ops.memory_efficient_attention(q, k, v) return out def nonlinearity(x): return x * torch.sigmoid(x) def GroupNorm(in_channels, num_groups=32): return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) class DiagonalGaussianDistribution: def __init__(self, parameters, deterministic=False): self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) def sample(self, noise=None): if noise is None: noise = torch.randn(self.mean.shape) x = self.mean + self.std * noise.to(device=self.parameters.device) return x def mode(self): return self.mean class EncoderDownSampleBlock(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv self.in_channels = in_channels if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): if self.with_conv: pad = (0, 1, 0, 1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = GroupNorm(in_channels) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = GroupNorm(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class Encoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, **kwargs): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,) + tuple(ch_mult) self.in_ch_mult = in_ch_mult self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(Attention(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = EncoderDownSampleBlock(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = Attention(block_in) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # end self.norm_out = GroupNorm(block_in) self.conv_out = torch.nn.Conv2d(block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1) def forward(self, x, return_hidden_states=False): # timestep embedding temb = None # print(f'encoder-input={x.shape}') # downsampling hs = [self.conv_in(x)] ## if we return hidden states for decoder usage, we will store them in a list if return_hidden_states: hidden_states = [] # print(f'encoder-conv in feat={hs[0].shape}') for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) # print(f'encoder-down feat={h.shape}') if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if return_hidden_states: hidden_states.append(h) if i_level != self.num_resolutions - 1: # print(f'encoder-downsample (input)={hs[-1].shape}') hs.append(self.down[i_level].downsample(hs[-1])) # print(f'encoder-downsample (output)={hs[-1].shape}') if return_hidden_states: hidden_states.append(hs[0]) # middle h = hs[-1] h = self.mid.block_1(h, temb) # print(f'encoder-mid1 feat={h.shape}') h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # print(f'encoder-mid2 feat={h.shape}') # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) # print(f'end feat={h.shape}') if return_hidden_states: return h, hidden_states else: return h class ConvCombiner(nn.Module): def __init__(self, ch): super().__init__() self.conv = nn.Conv2d(ch, ch, 1, padding=0) nn.init.zeros_(self.conv.weight) nn.init.zeros_(self.conv.bias) def forward(self, x, context): ## x: b c h w, context: b c 2 h w b, c, l, h, w = context.shape bt, c, h, w = x.shape context = rearrange(context, "b c l h w -> (b l) c h w") context = self.conv(context) context = rearrange(context, "(b l) c h w -> b c l h w", l=l) x = rearrange(x, "(b t) c h w -> b c t h w", t=bt // b) x[:, :, 0] = x[:, :, 0] + context[:, :, 0] x[:, :, -1] = x[:, :, -1] + context[:, :, -1] x = rearrange(x, "b c t h w -> (b t) c h w") return x class AttentionCombiner(nn.Module): def __init__( self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0, **kwargs ): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.heads = heads self.dim_head = dim_head self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) self.attention_op = None self.norm = GroupNorm(query_dim) nn.init.zeros_(self.to_out[0].weight) nn.init.zeros_(self.to_out[0].bias) def forward( self, x, context=None, mask=None, ): bt, c, h, w = x.shape h_ = self.norm(x) h_ = rearrange(h_, "b c h w -> b (h w) c") q = self.to_q(h_) b, c, l, h, w = context.shape context = rearrange(context, "b c l h w -> (b l) (h w) c") k = self.to_k(context) v = self.to_v(context) t = bt // b k = repeat(k, "(b l) d c -> (b t) (l d) c", l=l, t=t) v = repeat(v, "(b l) d c -> (b t) (l d) c", l=l, t=t) b, _, _ = q.shape q, k, v = map( lambda t: t.unsqueeze(3) .reshape(b, t.shape[1], self.heads, self.dim_head) .permute(0, 2, 1, 3) .reshape(b * self.heads, t.shape[1], self.dim_head) .contiguous(), (q, k, v), ) out = chunked_attention( q, k, v, batch_chunk=1 ) if exists(mask): raise NotImplementedError out = ( out.unsqueeze(0) .reshape(b, self.heads, out.shape[1], self.dim_head) .permute(0, 2, 1, 3) .reshape(b, out.shape[1], self.heads * self.dim_head) ) out = self.to_out(out) out = rearrange(out, "bt (h w) c -> bt c h w", h=h, w=w, c=c) return x + out class Attention(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = GroupNorm(in_channels) self.q = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.k = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.v = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.proj_out = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) def attention(self, h_: torch.Tensor) -> torch.Tensor: h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention B, C, H, W = q.shape q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v)) q, k, v = map( lambda t: t.unsqueeze(3) .reshape(B, t.shape[1], 1, C) .permute(0, 2, 1, 3) .reshape(B * 1, t.shape[1], C) .contiguous(), (q, k, v), ) out = chunked_attention( q, k, v, batch_chunk=1 ) out = ( out.unsqueeze(0) .reshape(B, 1, out.shape[1], C) .permute(0, 2, 1, 3) .reshape(B, out.shape[1], C) ) return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C) def forward(self, x, **kwargs): h_ = x h_ = self.attention(h_) h_ = self.proj_out(h_) return x + h_ class VideoDecoder(nn.Module): def __init__( self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, attn_level=[2, 3], video_kernel_size=[3, 1, 1], alpha: float = 0.0, merge_strategy: str = "learned", **kwargs, ): super().__init__() self.video_kernel_size = video_kernel_size self.alpha = alpha self.merge_strategy = merge_strategy self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end self.tanh_out = tanh_out self.attn_level = attn_level # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,) + tuple(ch_mult) block_in = ch * ch_mult[self.num_resolutions - 1] curr_res = resolution // 2 ** (self.num_resolutions - 1) self.z_shape = (1, z_channels, curr_res, curr_res) # z to block_in self.conv_in = torch.nn.Conv2d( z_channels, block_in, kernel_size=3, stride=1, padding=1 ) # middle self.mid = nn.Module() self.mid.block_1 = VideoResBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy, ) self.mid.attn_1 = Attention(block_in) self.mid.block_2 = VideoResBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy, ) # upsampling self.up = nn.ModuleList() self.attn_refinement = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): block.append( VideoResBlock( in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(Attention(block_in)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order if i_level in self.attn_level: self.attn_refinement.insert(0, AttentionCombiner(block_in)) else: self.attn_refinement.insert(0, ConvCombiner(block_in)) # end self.norm_out = GroupNorm(block_in) self.attn_refinement.append(ConvCombiner(block_in)) self.conv_out = DecoderConv3D( block_in, out_ch, kernel_size=3, stride=1, padding=1, video_kernel_size=self.video_kernel_size ) def forward(self, z, ref_context=None, **kwargs): ## ref_context: b c 2 h w, 2 means starting and ending frame # assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h, temb, **kwargs) h = self.mid.attn_1(h, **kwargs) h = self.mid.block_2(h, temb, **kwargs) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](h, temb, **kwargs) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h, **kwargs) if ref_context: h = self.attn_refinement[i_level](x=h, context=ref_context[i_level]) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) if ref_context: # print(h.shape, ref_context[i_level].shape) #torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256]) h = self.attn_refinement[-1](x=h, context=ref_context[-1]) h = self.conv_out(h, **kwargs) if self.tanh_out: h = torch.tanh(h) return h class TimeStackBlock(torch.nn.Module): def __init__( self, channels: int, emb_channels: int, dropout: float, out_channels: int = None, use_conv: bool = False, use_scale_shift_norm: bool = False, dims: int = 2, use_checkpoint: bool = False, up: bool = False, down: bool = False, kernel_size: int = 3, exchange_temb_dims: bool = False, skip_t_emb: bool = False, ): super().__init__() self.channels = channels self.emb_channels = emb_channels self.dropout = dropout self.out_channels = out_channels or channels self.use_conv = use_conv self.use_checkpoint = use_checkpoint self.use_scale_shift_norm = use_scale_shift_norm self.exchange_temb_dims = exchange_temb_dims if isinstance(kernel_size, list): padding = [k // 2 for k in kernel_size] else: padding = kernel_size // 2 self.in_layers = nn.Sequential( normalization(channels), nn.SiLU(), conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding), ) self.updown = up or down if up: self.h_upd = Upsample(channels, False, dims) self.x_upd = Upsample(channels, False, dims) elif down: self.h_upd = Downsample(channels, False, dims) self.x_upd = Downsample(channels, False, dims) else: self.h_upd = self.x_upd = nn.Identity() self.skip_t_emb = skip_t_emb self.emb_out_channels = ( 2 * self.out_channels if use_scale_shift_norm else self.out_channels ) if self.skip_t_emb: # print(f"Skipping timestep embedding in {self.__class__.__name__}") assert not self.use_scale_shift_norm self.emb_layers = None self.exchange_temb_dims = False else: self.emb_layers = nn.Sequential( nn.SiLU(), linear( emb_channels, self.emb_out_channels, ), ) self.out_layers = nn.Sequential( normalization(self.out_channels), nn.SiLU(), nn.Dropout(p=dropout), zero_module( conv_nd( dims, self.out_channels, self.out_channels, kernel_size, padding=padding, ) ), ) if self.out_channels == channels: self.skip_connection = nn.Identity() elif use_conv: self.skip_connection = conv_nd( dims, channels, self.out_channels, kernel_size, padding=padding ) else: self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: if self.updown: in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] h = in_rest(x) h = self.h_upd(h) x = self.x_upd(x) h = in_conv(h) else: h = self.in_layers(x) if self.skip_t_emb: emb_out = torch.zeros_like(h) else: emb_out = self.emb_layers(emb).type(h.dtype) while len(emb_out.shape) < len(h.shape): emb_out = emb_out[..., None] if self.use_scale_shift_norm: out_norm, out_rest = self.out_layers[0], self.out_layers[1:] scale, shift = torch.chunk(emb_out, 2, dim=1) h = out_norm(h) * (1 + scale) + shift h = out_rest(h) else: if self.exchange_temb_dims: emb_out = rearrange(emb_out, "b t c ... -> b c t ...") h = h + emb_out h = self.out_layers(h) return self.skip_connection(x) + h class VideoResBlock(ResnetBlock): def __init__( self, out_channels, *args, dropout=0.0, video_kernel_size=3, alpha=0.0, merge_strategy="learned", **kwargs, ): super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs) if video_kernel_size is None: video_kernel_size = [3, 1, 1] self.time_stack = TimeStackBlock( channels=out_channels, emb_channels=0, dropout=dropout, dims=3, use_scale_shift_norm=False, use_conv=False, up=False, down=False, kernel_size=video_kernel_size, use_checkpoint=True, skip_t_emb=True, ) self.merge_strategy = merge_strategy if self.merge_strategy == "fixed": self.register_buffer("mix_factor", torch.Tensor([alpha])) elif self.merge_strategy == "learned": self.register_parameter( "mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) ) else: raise ValueError(f"unknown merge strategy {self.merge_strategy}") def get_alpha(self, bs): if self.merge_strategy == "fixed": return self.mix_factor elif self.merge_strategy == "learned": return torch.sigmoid(self.mix_factor) else: raise NotImplementedError() def forward(self, x, temb, skip_video=False, timesteps=None): assert isinstance(timesteps, int) b, c, h, w = x.shape x = super().forward(x, temb) if not skip_video: x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) x = self.time_stack(x, temb) alpha = self.get_alpha(bs=b // timesteps) x = alpha * x + (1.0 - alpha) * x_mix x = rearrange(x, "b c t h w -> (b t) c h w") return x class DecoderConv3D(torch.nn.Conv2d): def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs): super().__init__(in_channels, out_channels, *args, **kwargs) if isinstance(video_kernel_size, list): padding = [int(k // 2) for k in video_kernel_size] else: padding = int(video_kernel_size // 2) self.time_mix_conv = torch.nn.Conv3d( in_channels=out_channels, out_channels=out_channels, kernel_size=video_kernel_size, padding=padding, ) def forward(self, input, timesteps, skip_video=False): x = super().forward(input) if skip_video: return x x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) x = self.time_mix_conv(x) return rearrange(x, "b c t h w -> (b t) c h w") class VideoAutoencoderKL(torch.nn.Module, PyTorchModelHubMixin): def __init__(self, double_z=True, z_channels=4, resolution=256, in_channels=3, out_ch=3, ch=128, ch_mult=[], num_res_blocks=2, attn_resolutions=[], dropout=0.0, ): super().__init__() self.encoder = Encoder(double_z=double_z, z_channels=z_channels, resolution=resolution, in_channels=in_channels, out_ch=out_ch, ch=ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout) self.decoder = VideoDecoder(double_z=double_z, z_channels=z_channels, resolution=resolution, in_channels=in_channels, out_ch=out_ch, ch=ch, ch_mult=ch_mult, num_res_blocks=num_res_blocks, attn_resolutions=attn_resolutions, dropout=dropout) self.quant_conv = torch.nn.Conv2d(2 * z_channels, 2 * z_channels, 1) self.post_quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1) self.scale_factor = 0.18215 def encode(self, x, return_hidden_states=False, **kwargs): if return_hidden_states: h, hidden = self.encoder(x, return_hidden_states) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior, hidden else: h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior, None def decode(self, z, **kwargs): if len(kwargs) == 0: z = self.post_quant_conv(z) dec = self.decoder(z, **kwargs) return dec @property def device(self): return next(self.parameters()).device @property def dtype(self): return next(self.parameters()).dtype