import torch import os import argparse import logging torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from copy import deepcopy from torch.utils.data.distributed import DistributedSampler from torch.utils.data import DataLoader from glob import glob import yaml from collections import OrderedDict from time import time from einops import rearrange, repeat from diffusers import AutoencoderKL from transformers import SpeechT5HifiGan from audioldm2.utilities.data.dataset import AudioDataset from constants import build_model from utils import load_clip, load_clap, load_t5 from thop import profile @torch.no_grad() def update_ema(ema_model, model, decay=0.9999): """ Step the EMA model towards the current model. """ ema_params = OrderedDict(ema_model.named_parameters()) model_params = OrderedDict(model.named_parameters()) for name, param in model_params.items(): # TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay) def requires_grad(model, flag=True): """ Set requires_grad flag for all parameters in a model. """ for p in model.parameters(): p.requires_grad = flag def cleanup(): """ End DDP training. """ dist.destroy_process_group() def create_logger(logging_dir): """ Create a logger that writes to a log file and stdout. """ if dist.get_rank() == 0: # real logger logging.basicConfig( level=logging.INFO, format='[\033[34m%(asctime)s\033[0m] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")] ) logger = logging.getLogger(__name__) else: # dummy logger (does nothing) logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) return logger class RF(torch.nn.Module): def __init__(self, ln=True): super().__init__() self.ln = ln self.stratified = False def forward(self, model, x, **kwargs): b = x.size(0) if self.ln: if self.stratified: # stratified sampling of normals # first stratified sample from uniform quantiles = torch.linspace(0, 1, b + 1).to(x.device) z = quantiles[:-1] + torch.rand((b,)).to(x.device) / b # now transform to normal z = torch.erfinv(2 * z - 1) * math.sqrt(2) t = torch.sigmoid(z) else: nt = torch.randn((b,)).to(x.device) t = torch.sigmoid(nt) else: t = torch.rand((b,)).to(x.device) texp = t.view([b, *([1] * len(x.shape[1:]))]) z1 = torch.randn_like(x) zt = (1 - texp) * x + texp * z1 # make t, zt into same dtype as x zt, t = zt.to(x.dtype), t.to(x.dtype) vtheta = model(x=zt, t=t, **kwargs) # print(z1.size(), x.size(), vtheta.size()) batchwise_mse = ((z1 - x - vtheta) ** 2).mean(dim=list(range(1, len(x.shape)))) tlist = batchwise_mse.detach().cpu().reshape(-1).tolist() ttloss = [(tv, tloss) for tv, tloss in zip(t, tlist)] return batchwise_mse.mean(), {"batchwise_loss": ttloss} @torch.no_grad() def sample(self, model, z, conds, null_cond=None, sample_steps=50, cfg=2.0, **kwargs): b = z.size(0) dt = 1.0 / sample_steps dt = torch.tensor([dt] * b).to(z.device).view([b, *([1] * len(z.shape[1:]))]) images = [z] for i in range(sample_steps, 0, -1): t = i / sample_steps t = torch.tensor([t] * b).to(z.device) vc = model(x=z, t=t, **conds) if null_cond is not None: vu = model(x=z, t=t, **null_cond) vc = vu + cfg * (vc - vu) z = z - dt * vc images.append(z) return images @torch.no_grad() def sample_with_xps(self, model, z, conds, null_cond=None, sample_steps=50, cfg=2.0, **kwargs): b = z.size(0) dt = 1.0 / sample_steps dt = torch.tensor([dt] * b).to(z.device).view([b, *([1] * len(z.shape[1:]))]) images = [z] for i in range(sample_steps, 0, -1): t = i / sample_steps t = torch.tensor([t] * b).to(z.device) # print(z.size(), t.size()) vc = model(x=z, t=t, **conds) if null_cond is not None: vu = model(x=z, t=t, **null_cond) vc = vu + cfg * (vc - vu) x = z - i * dt * vc z = z - dt * vc images.append(x) return images def prepare_model_inputs(args, batch, device, vae, clip, t5,): text_embedding, text_embedding_mask = batch['text_embedding'], batch['text_embedding_mask'] text_embedding_t5, text_embedding_mask_t5 = batch['text_embedding_t5'], batch['text_embedding_mask_t5'] # print(image.size(), text_embedding.size(), text_embedding_t5.size()) # clip & mT5 text embedding text_embedding = text_embedding.to(device) text_embedding_mask = text_embedding_mask.to(device) with torch.no_grad(): encoder_hidden_states = clip.hf_module( text_embedding.to(device), attention_mask=text_embedding_mask, output_hidden_states=False, )["pooler_output"] # () # print(encoder_hidden_states.size()) text_embedding_t5 = text_embedding_t5.to(device).squeeze(1) text_embedding_mask_t5 = text_embedding_mask_t5.to(device).squeeze(1) with torch.no_grad(): output_t5 = t5.hf_module( input_ids=text_embedding_t5, attention_mask=text_embedding_mask_t5, output_hidden_states=False, ) encoder_hidden_states_t5 = output_t5["last_hidden_state"].detach() with torch.no_grad(): image = vae.encode(batch['log_mel_spec'].unsqueeze(1).to(device)).latent_dist.sample().mul_(vae.config.scaling_factor) # positional embedding bs, c, h, w = image.shape image = rearrange(image, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2).float() img_ids = torch.zeros(h // 2, w // 2, 3) img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) txt_ids = torch.zeros(bs, encoder_hidden_states_t5.shape[1], 3) # Model conditions model_kwargs = dict( img_ids=img_ids.to(image.device), txt = encoder_hidden_states_t5.to(image.device).float(), txt_ids = txt_ids.to(image.device), y = encoder_hidden_states.to(image.device).float(), ) return image, model_kwargs def main(args): assert torch.cuda.is_available(), "Training currently requires at least one GPU." dist.init_process_group("nccl") assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size." rank = dist.get_rank() device = rank % torch.cuda.device_count() seed = args.global_seed * dist.get_world_size() + rank torch.manual_seed(seed) torch.cuda.set_device(device) print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") # Setup an experiment folder: if rank == 0: os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders) experiment_index = len(glob(f"{args.results_dir}/*")) model_string_name = args.version.replace("/", "-") # e.g., DiT-XL/2 --> DiT-XL-2 (for naming folders) experiment_dir = f"{args.results_dir}/{model_string_name}" # Create an experiment folder checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints os.makedirs(checkpoint_dir, exist_ok=True) logger = create_logger(experiment_dir) logger.info(f"Experiment directory created at {experiment_dir}") else: logger = create_logger(None) model = build_model(args.version).to(device) parameters_sum = sum(x.numel() for x in model.parameters()) logger.info(f"{parameters_sum / 1000000.0} M") if args.resume is not None: print('load from: ', args.resume) resume_ckpt = torch.load(args.resume, map_location=lambda storage, loc: storage)['ema'] model.load_state_dict(resume_ckpt) # Note that parameter initialization is done within the DiT constructor ema = deepcopy(model).to(device) # Create an EMA of the model for use after training requires_grad(ema, False) model = DDP(model.to(device), device_ids=[rank]) diffusion = RF() model_path = '/maindata/data/shared/public/zhengcong.fei/dataset/dataset_music/audioldm2' vae = AutoencoderKL.from_pretrained(os.path.join(model_path, 'vae')).to(device) # vocoder = SpeechT5HifiGan.from_pretrained(os.path.join(model_path, 'vocoder')).to(device) t5 = load_t5(device, max_length=256) clap = load_clap(device, max_length=256) # clip = load_clip(device) opt = torch.optim.AdamW(model.parameters(), lr=3e-5, weight_decay=0) config = yaml.load( open( 'config/16k_64.yaml', 'r' ), Loader=yaml.FullLoader, ) dataset = AudioDataset( config=config, split="train", waveform_only=False, dataset_json_path=args.data_path, tokenizer=clap.tokenizer, uncond_pro=0.1, text_ctx_len=77, tokenizer_t5=t5.tokenizer, text_ctx_len_t5=256, uncond_pro_t5=0.1, ) sampler = DistributedSampler( dataset, num_replicas=dist.get_world_size(), rank=rank, shuffle=True, seed=args.global_seed ) loader = DataLoader( dataset, batch_size=int(args.global_batch_size // dist.get_world_size()), shuffle=False, sampler=sampler, num_workers=args.num_workers, pin_memory=True, drop_last=True ) logger.info(f"Dataset contains {len(dataset):,}") # Prepare models for training: update_ema(ema, model.module, decay=0) # Ensure EMA is initialized with synced weights model.train() # important! This enables embedding dropout for classifier-free guidance ema.eval() # EMA model should always be in eval mode # Variables for monitoring/logging purposes: train_steps = 0 log_steps = 0 running_loss = 0 start_time = time() logger.info(f"Training for {args.epochs} epochs...") for epoch in range(args.epochs): sampler.set_epoch(epoch) logger.info(f"Beginning epoch {epoch}...") data_iter_step = 0 for batch in loader: latents, model_kwargs = prepare_model_inputs(args, batch, device, vae, clap, t5,) loss, _ = diffusion.forward(model=model, x=latents, **model_kwargs) # print(loss) if (data_iter_step + 1) % args.accum_iter == 0: opt.zero_grad() loss.backward() opt.step() update_ema(ema, model.module) data_iter_step += 1 # Log loss values: running_loss += loss.item() log_steps += 1 train_steps += 1 if train_steps % args.log_every == 0: # Measure training speed: torch.cuda.synchronize() end_time = time() steps_per_sec = log_steps / (end_time - start_time) # Reduce loss history over all processes: avg_loss = torch.tensor(running_loss / log_steps, device=device) dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM) avg_loss = avg_loss.item() / dist.get_world_size() logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}") # Reset monitoring variables: running_loss = 0 log_steps = 0 start_time = time() # Save DiT checkpoint: if train_steps % args.ckpt_every == 0 and train_steps > 0: if rank == 0: checkpoint = { # "model": model.module.state_dict(), "ema": ema.state_dict(), "opt": opt.state_dict(), "args": args } checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt" try: torch.save(checkpoint, checkpoint_path) except Exception as e: print(e) logger.info(f"Saved checkpoint to {checkpoint_path}") dist.barrier() # model.eval() # important! This disables randomized embedding dropout # do any sampling/FID calculation/etc. with ema (or model) in eval mode ... logger.info("Done!") cleanup() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--data-path", type=str, default='fma_dataset.json') parser.add_argument("--results-dir", type=str, default="results") parser.add_argument("--resume", type=str, default=None) parser.add_argument("--version", type=str, default="large") parser.add_argument("--vae-path", type=str, default='audioldm2/vae') parser.add_argument("--epochs", type=int, default=1400) parser.add_argument("--global_batch_size", type=int, default=32) parser.add_argument("--global-seed", type=int, default=1234) parser.add_argument("--num-workers", type=int, default=4) parser.add_argument("--log-every", type=int, default=100) parser.add_argument('--accum_iter', default=16, type=int,) parser.add_argument("--ckpt-every", type=int, default=100_000) parser.add_argument('--local-rank', type=int, default=-1, help='local rank passed from distributed launcher') args = parser.parse_args() main(args)