flosstradamus's picture
Upload 194 files
afe1a07 verified
raw
history blame
67.9 kB
from multiprocessing.sharedctypes import Value
import os
import torch
import torch.nn as nn
import numpy as np
from einops import rearrange, repeat
from contextlib import contextmanager
from functools import partial
from tqdm import tqdm
from torchvision.utils import make_grid
from audioldm2.latent_diffusion.modules.encoders.modules import *
from audioldm2.latent_diffusion.util import (
exists,
default,
count_params,
instantiate_from_config,
)
from audioldm2.latent_diffusion.modules.ema import LitEma
from audioldm2.latent_diffusion.modules.distributions.distributions import (
DiagonalGaussianDistribution,
)
# from latent_encoder.autoencoder import (
# VQModelInterface,
# IdentityFirstStage,
# AutoencoderKL,
# )
from audioldm2.latent_diffusion.modules.diffusionmodules.util import (
make_beta_schedule,
extract_into_tensor,
noise_like,
)
from audioldm2.latent_diffusion.models.ddim import DDIMSampler
from audioldm2.latent_diffusion.models.plms import PLMSSampler
import soundfile as sf
import os
__conditioning_keys__ = {"concat": "c_concat", "crossattn": "c_crossattn", "adm": "y"}
# CACHE_DIR = os.getenv(
# "AUDIOLDM_CACHE_DIR", os.path.join(os.path.expanduser("~"), ".cache/audioldm2")
# )
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def uniform_on_device(r1, r2, shape, device):
return (r1 - r2) * torch.rand(*shape, device=device) + r2
class DDPM(nn.Module):
# classic DDPM with Gaussian diffusion, in image space
def __init__(
self,
unet_config,
sampling_rate=None,
timesteps=1000,
beta_schedule="linear",
loss_type="l2",
ckpt_path=None,
ignore_keys=[],
load_only_unet=False,
monitor="val/loss",
use_ema=True,
first_stage_key="image",
latent_t_size=256,
latent_f_size=16,
channels=3,
log_every_t=100,
clip_denoised=True,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
given_betas=None,
original_elbo_weight=0.0,
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
l_simple_weight=1.0,
conditioning_key=None,
parameterization="eps", # all assuming fixed variance schedules
scheduler_config=None,
use_positional_encodings=False,
learn_logvar=False,
logvar_init=0.0,
evaluator=None,
device=None,
):
super().__init__()
assert parameterization in [
"eps",
"x0",
"v",
], 'currently only supporting "eps" and "x0" and "v"'
self.parameterization = parameterization
self.state = None
self.device = device
# print(
# f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode"
# )
assert sampling_rate is not None
self.validation_folder_name = "temp_name"
self.clip_denoised = clip_denoised
self.log_every_t = log_every_t
self.first_stage_key = first_stage_key
self.sampling_rate = sampling_rate
self.clap = CLAPAudioEmbeddingClassifierFreev2(
pretrained_path="",
enable_cuda=self.device=="cuda",
sampling_rate=self.sampling_rate,
embed_mode="audio",
amodel="HTSAT-base",
)
self.initialize_param_check_toolkit()
self.latent_t_size = latent_t_size
self.latent_f_size = latent_f_size
self.channels = channels
self.use_positional_encodings = use_positional_encodings
self.model = DiffusionWrapper(unet_config, conditioning_key)
count_params(self.model, verbose=True)
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self.model)
# print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
self.use_scheduler = scheduler_config is not None
if self.use_scheduler:
self.scheduler_config = scheduler_config
self.v_posterior = v_posterior
self.original_elbo_weight = original_elbo_weight
self.l_simple_weight = l_simple_weight
if monitor is not None:
self.monitor = monitor
if ckpt_path is not None:
self.init_from_ckpt(
ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet
)
self.register_schedule(
given_betas=given_betas,
beta_schedule=beta_schedule,
timesteps=timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
self.loss_type = loss_type
self.learn_logvar = learn_logvar
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
if self.learn_logvar:
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
else:
self.logvar = nn.Parameter(self.logvar, requires_grad=False)
self.logger_save_dir = None
self.logger_exp_name = None
self.logger_exp_group_name = None
self.logger_version = None
self.label_indices_total = None
# To avoid the system cannot find metric value for checkpoint
self.metrics_buffer = {
"val/kullback_leibler_divergence_sigmoid": 15.0,
"val/kullback_leibler_divergence_softmax": 10.0,
"val/psnr": 0.0,
"val/ssim": 0.0,
"val/inception_score_mean": 1.0,
"val/inception_score_std": 0.0,
"val/kernel_inception_distance_mean": 0.0,
"val/kernel_inception_distance_std": 0.0,
"val/frechet_inception_distance": 133.0,
"val/frechet_audio_distance": 32.0,
}
self.initial_learning_rate = None
self.test_data_subset_path = None
def get_log_dir(self):
return os.path.join(
self.logger_save_dir, self.logger_exp_group_name, self.logger_exp_name
)
def set_log_dir(self, save_dir, exp_group_name, exp_name):
self.logger_save_dir = save_dir
self.logger_exp_group_name = exp_group_name
self.logger_exp_name = exp_name
def register_schedule(
self,
given_betas=None,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
if exists(given_betas):
betas = given_betas
else:
betas = make_beta_schedule(
beta_schedule,
timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
alphas = 1.0 - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
(timesteps,) = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert (
alphas_cumprod.shape[0] == self.num_timesteps
), "alphas have to be defined for each timestep"
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer("betas", to_torch(betas))
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
self.register_buffer("alphas_cumprod_prev", to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer("sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer(
"sqrt_one_minus_alphas_cumprod", to_torch(np.sqrt(1.0 - alphas_cumprod))
)
self.register_buffer(
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod))
)
self.register_buffer(
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod))
)
self.register_buffer(
"sqrt_recipm1_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod - 1))
)
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = (1 - self.v_posterior) * betas * (
1.0 - alphas_cumprod_prev
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer("posterior_variance", to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer(
"posterior_log_variance_clipped",
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
)
self.register_buffer(
"posterior_mean_coef1",
to_torch(betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)),
)
self.register_buffer(
"posterior_mean_coef2",
to_torch(
(1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod)
),
)
if self.parameterization == "eps":
lvlb_weights = self.betas**2 / (
2
* self.posterior_variance
* to_torch(alphas)
* (1 - self.alphas_cumprod)
)
elif self.parameterization == "x0":
lvlb_weights = (
0.5
* np.sqrt(torch.Tensor(alphas_cumprod))
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
)
elif self.parameterization == "v":
lvlb_weights = torch.ones_like(
self.betas**2
/ (
2
* self.posterior_variance
* to_torch(alphas)
* (1 - self.alphas_cumprod)
)
)
else:
raise NotImplementedError("mu not supported")
# TODO how to choose this term
lvlb_weights[0] = lvlb_weights[1]
self.register_buffer("lvlb_weights", lvlb_weights, persistent=False)
assert not torch.isnan(self.lvlb_weights).all()
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.model.parameters())
self.model_ema.copy_to(self.model)
# if context is not None:
# print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.model.parameters())
# if context is not None:
# print(f"{context}: Restored training weights")
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
missing, unexpected = (
self.load_state_dict(sd, strict=False)
if not only_model
else self.model.load_state_dict(sd, strict=False)
)
print(
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
)
if len(missing) > 0:
print(f"Missing Keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected Keys: {unexpected}")
def q_mean_variance(self, x_start, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
log_variance = extract_into_tensor(
self.log_one_minus_alphas_cumprod, t, x_start.shape
)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
* noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract_into_tensor(
self.posterior_log_variance_clipped, t, x_t.shape
)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, clip_denoised: bool):
model_out = self.model(x, t)
if self.parameterization == "eps":
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == "x0":
x_recon = model_out
if clip_denoised:
x_recon.clamp_(-1.0, 1.0)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
x_start=x_recon, x_t=x, t=t
)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(
x=x, t=t, clip_denoised=clip_denoised
)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous()
)
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, shape, return_intermediates=False):
device = self.betas.device
b = shape[0]
img = torch.randn(shape, device=device)
intermediates = [img]
for i in tqdm(
reversed(range(0, self.num_timesteps)),
desc="Sampling t",
total=self.num_timesteps,
):
img = self.p_sample(
img,
torch.full((b,), i, device=device, dtype=torch.long),
clip_denoised=self.clip_denoised,
)
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
intermediates.append(img)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(self, batch_size=16, return_intermediates=False):
shape = (batch_size, channels, self.latent_t_size, self.latent_f_size)
self.channels
return self.p_sample_loop(shape, return_intermediates=return_intermediates)
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
def get_loss(self, pred, target, mean=True):
if self.loss_type == "l1":
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == "l2":
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(target, pred, reduction="none")
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
return loss
def predict_start_from_z_and_v(self, x_t, t, v):
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
)
def predict_eps_from_z_and_v(self, x_t, t, v):
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape)
* x_t
)
def get_v(self, x, noise, t):
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise
- extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
)
def forward(self, x, *args, **kwargs):
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
t = torch.randint(
0, self.num_timesteps, (x.shape[0],), device=self.device
).long()
return self.p_losses(x, t, *args, **kwargs)
def get_input(self, batch, k):
# fbank, log_magnitudes_stft, label_indices, fname, waveform, clip_label, text = batch
# fbank, stft, label_indices, fname, waveform, text = batch
fname, text, waveform, stft, fbank, phoneme_idx = (
batch["fname"],
batch["text"],
batch["waveform"],
batch["stft"],
batch["log_mel_spec"],
batch["phoneme_idx"]
)
# for i in range(fbank.size(0)):
# fb = fbank[i].numpy()
# seg_lb = seg_label[i].numpy()
# logits = np.mean(seg_lb, axis=0)
# index = np.argsort(logits)[::-1][:5]
# plt.imshow(seg_lb[:,index], aspect="auto")
# plt.title(index)
# plt.savefig("%s_label.png" % i)
# plt.close()
# plt.imshow(fb, aspect="auto")
# plt.savefig("%s_fb.png" % i)
# plt.close()
ret = {}
ret["fbank"] = (
fbank.unsqueeze(1).to(memory_format=torch.contiguous_format).float()
)
ret["stft"] = stft.to(memory_format=torch.contiguous_format).float()
# ret["clip_label"] = clip_label.to(memory
# _format=torch.contiguous_format).float()
ret["waveform"] = waveform.to(memory_format=torch.contiguous_format).float()
ret["phoneme_idx"] = phoneme_idx.to(memory_format=torch.contiguous_format).long()
ret["text"] = list(text)
ret["fname"] = fname
for key in batch.keys():
if key not in ret.keys():
ret[key] = batch[key]
return ret[k]
def _get_rows_from_list(self, samples):
n_imgs_per_row = len(samples)
denoise_grid = rearrange(samples, "n b c h w -> b n c h w")
denoise_grid = rearrange(denoise_grid, "b n c h w -> (b n) c h w")
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
return denoise_grid
@torch.no_grad()
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
log = dict()
x = self.get_input(batch, self.first_stage_key)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
x = x.to(self.device)[:N]
log["inputs"] = x
# get diffusion row
diffusion_row = list()
x_start = x[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), "1 -> b", b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
diffusion_row.append(x_noisy)
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
if sample:
# get denoise row
with self.ema_scope("Plotting"):
samples, denoise_row = self.sample(
batch_size=N, return_intermediates=True
)
log["samples"] = samples
log["denoise_row"] = self._get_rows_from_list(denoise_row)
if return_keys:
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
return log
else:
return {key: log[key] for key in return_keys}
return log
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.model.parameters())
if self.learn_logvar:
params = params + [self.logvar]
opt = torch.optim.AdamW(params, lr=lr)
return opt
def initialize_param_check_toolkit(self):
self.tracked_steps = 0
self.param_dict = {}
def statistic_require_grad_tensor_number(self, module, name=None):
requires_grad_num = 0
total_num = 0
require_grad_tensor = None
for p in module.parameters():
if p.requires_grad:
requires_grad_num += 1
if require_grad_tensor is None:
require_grad_tensor = p
total_num += 1
print(
"Module: [%s] have %s trainable parameters out of %s total parameters (%.2f)"
% (name, requires_grad_num, total_num, requires_grad_num / total_num)
)
return require_grad_tensor
class LatentDiffusion(DDPM):
"""main class"""
def __init__(
self,
first_stage_config,
cond_stage_config=None,
num_timesteps_cond=None,
cond_stage_key="image",
optimize_ddpm_parameter=True,
unconditional_prob_cfg=0.1,
warmup_steps=10000,
cond_stage_trainable=False,
concat_mode=True,
cond_stage_forward=None,
conditioning_key=None,
scale_factor=1.0,
batchsize=None,
evaluation_params={},
scale_by_std=False,
base_learning_rate=None,
*args,
**kwargs,
):
self.learning_rate = base_learning_rate
self.num_timesteps_cond = default(num_timesteps_cond, 1)
self.scale_by_std = scale_by_std
self.warmup_steps = warmup_steps
if optimize_ddpm_parameter:
if unconditional_prob_cfg == 0.0:
"You choose to optimize DDPM. The classifier free guidance scale should be 0.1"
unconditional_prob_cfg = 0.1
else:
if unconditional_prob_cfg == 0.1:
"You choose not to optimize DDPM. The classifier free guidance scale should be 0.0"
unconditional_prob_cfg = 0.0
self.evaluation_params = evaluation_params
assert self.num_timesteps_cond <= kwargs["timesteps"]
# for backwards compatibility after implementation of DiffusionWrapper
# if conditioning_key is None:
# conditioning_key = "concat" if concat_mode else "crossattn"
# if cond_stage_config == "__is_unconditional__":
# conditioning_key = None
conditioning_key = list(cond_stage_config.keys())
self.conditioning_key = conditioning_key
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
self.optimize_ddpm_parameter = optimize_ddpm_parameter
# if(not optimize_ddpm_parameter):
# print("Warning: Close the optimization of the latent diffusion model")
# for p in self.model.parameters():
# p.requires_grad=False
self.concat_mode = concat_mode
self.cond_stage_key = cond_stage_key
self.cond_stage_key_orig = cond_stage_key
try:
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
except:
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer("scale_factor", torch.tensor(scale_factor))
self.instantiate_first_stage(first_stage_config)
self.unconditional_prob_cfg = unconditional_prob_cfg
self.cond_stage_models = nn.ModuleList([])
self.instantiate_cond_stage(cond_stage_config)
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
self.bbox_tokenizer = None
self.conditional_dry_run_finished = False
self.restarted_from_ckpt = False
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys)
self.restarted_from_ckpt = True
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.model.parameters())
for each in self.cond_stage_models:
params = params + list(
each.parameters()
) # Add the parameter from the conditional stage
if self.learn_logvar:
print("Diffusion model optimizing logvar")
params.append(self.logvar)
opt = torch.optim.AdamW(params, lr=lr)
# if self.use_scheduler:
# assert "target" in self.scheduler_config
# scheduler = instantiate_from_config(self.scheduler_config)
# print("Setting up LambdaLR scheduler...")
# scheduler = [
# {
# "scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule),
# "interval": "step",
# "frequency": 1,
# }
# ]
# return [opt], scheduler
return opt
def make_cond_schedule(
self,
):
self.cond_ids = torch.full(
size=(self.num_timesteps,),
fill_value=self.num_timesteps - 1,
dtype=torch.long,
)
ids = torch.round(
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
).long()
self.cond_ids[: self.num_timesteps_cond] = ids
@torch.no_grad()
def on_train_batch_start(self, batch, batch_idx):
# only for very first batch
if (
self.scale_factor == 1
and self.scale_by_std
and self.current_epoch == 0
and self.global_step == 0
and batch_idx == 0
and not self.restarted_from_ckpt
):
# assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
# set rescale weight to 1./std of encodings
print("### USING STD-RESCALING ###")
x = super().get_input(batch, self.first_stage_key)
x = x.to(self.device)
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
del self.scale_factor
self.register_buffer("scale_factor", 1.0 / z.flatten().std())
print(f"setting self.scale_factor to {self.scale_factor}")
print("### USING STD-RESCALING ###")
def register_schedule(
self,
given_betas=None,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
super().register_schedule(
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
)
self.shorten_cond_schedule = self.num_timesteps_cond > 1
if self.shorten_cond_schedule:
self.make_cond_schedule()
def instantiate_first_stage(self, config):
model = instantiate_from_config(config)
self.first_stage_model = model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
def make_decision(self, probability):
if float(torch.rand(1)) < probability:
return True
else:
return False
def instantiate_cond_stage(self, config):
self.cond_stage_model_metadata = {}
for i, cond_model_key in enumerate(config.keys()):
if "params" in config[cond_model_key] and "device" in config[cond_model_key]["params"]:
config[cond_model_key]["params"]["device"] = self.device
model = instantiate_from_config(config[cond_model_key])
model = model.to(self.device)
self.cond_stage_models.append(model)
self.cond_stage_model_metadata[cond_model_key] = {
"model_idx": i,
"cond_stage_key": config[cond_model_key]["cond_stage_key"],
"conditioning_key": config[cond_model_key]["conditioning_key"],
}
def get_first_stage_encoding(self, encoder_posterior):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError(
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
)
return self.scale_factor * z
def get_learned_conditioning(self, c, key, unconditional_cfg):
assert key in self.cond_stage_model_metadata.keys()
# Classifier-free guidance
if not unconditional_cfg:
c = self.cond_stage_models[
self.cond_stage_model_metadata[key]["model_idx"]
](c)
else:
# when the cond_stage_key is "all", pick one random element out
if isinstance(c, dict):
c = c[list(c.keys())[0]]
if isinstance(c, torch.Tensor):
batchsize = c.size(0)
elif isinstance(c, list):
batchsize = len(c)
else:
raise NotImplementedError()
c = self.cond_stage_models[
self.cond_stage_model_metadata[key]["model_idx"]
].get_unconditional_condition(batchsize)
return c
def get_input(
self,
batch,
k,
return_first_stage_encode=True,
return_decoding_output=False,
return_encoder_input=False,
return_encoder_output=False,
unconditional_prob_cfg=0.1,
):
x = super().get_input(batch, k)
x = x.to(self.device)
if return_first_stage_encode:
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
else:
z = None
cond_dict = {}
if len(self.cond_stage_model_metadata.keys()) > 0:
unconditional_cfg = False
if self.conditional_dry_run_finished and self.make_decision(
unconditional_prob_cfg
):
unconditional_cfg = True
for cond_model_key in self.cond_stage_model_metadata.keys():
cond_stage_key = self.cond_stage_model_metadata[cond_model_key][
"cond_stage_key"
]
if cond_model_key in cond_dict.keys():
continue
# if not self.training:
# if isinstance(
# self.cond_stage_models[
# self.cond_stage_model_metadata[cond_model_key]["model_idx"]
# ],
# CLAPAudioEmbeddingClassifierFreev2,
# ):
# print(
# "Warning: CLAP model normally should use text for evaluation"
# )
# The original data for conditioning
# If cond_model_key is "all", that means the conditional model need all the information from a batch
if cond_stage_key != "all":
xc = super().get_input(batch, cond_stage_key)
if type(xc) == torch.Tensor:
xc = xc.to(self.device)
else:
xc = batch
# if cond_stage_key is "all", xc will be a dictionary containing all keys
# Otherwise xc will be an entry of the dictionary
c = self.get_learned_conditioning(
xc, key=cond_model_key, unconditional_cfg=unconditional_cfg
)
# cond_dict will be used to condition the diffusion model
# If one conditional model return multiple conditioning signal
if isinstance(c, dict):
for k in c.keys():
cond_dict[k] = c[k]
else:
cond_dict[cond_model_key] = c
# If the key is accidently added to the dictionary and not in the condition list, remove the condition
# for k in list(cond_dict.keys()):
# if(k not in self.cond_stage_model_metadata.keys()):
# del cond_dict[k]
out = [z, cond_dict]
if return_decoding_output:
xrec = self.decode_first_stage(z)
out += [xrec]
if return_encoder_input:
out += [x]
if return_encoder_output:
out += [encoder_posterior]
if not self.conditional_dry_run_finished:
self.conditional_dry_run_finished = True
# Output is a dictionary, where the value could only be tensor or tuple
return out
def decode_first_stage(self, z):
with torch.no_grad():
z = 1.0 / self.scale_factor * z
decoding = self.first_stage_model.decode(z)
return decoding
def mel_spectrogram_to_waveform(
self, mel, savepath=".", bs=None, name="outwav", save=True
):
# Mel: [bs, 1, t-steps, fbins]
if len(mel.size()) == 4:
mel = mel.squeeze(1)
mel = mel.permute(0, 2, 1)
waveform = self.first_stage_model.vocoder(mel)
waveform = waveform.cpu().detach().numpy()
if save:
self.save_waveform(waveform, savepath, name)
return waveform
def encode_first_stage(self, x):
with torch.no_grad():
return self.first_stage_model.encode(x)
def extract_possible_loss_in_cond_dict(self, cond_dict):
# This function enable the conditional module to return loss function that can optimize them
assert isinstance(cond_dict, dict)
losses = {}
for cond_key in cond_dict.keys():
if "loss" in cond_key and "noncond" in cond_key:
assert cond_key not in losses.keys()
losses[cond_key] = cond_dict[cond_key]
return losses
def filter_useful_cond_dict(self, cond_dict):
new_cond_dict = {}
for key in cond_dict.keys():
if key in self.cond_stage_model_metadata.keys():
new_cond_dict[key] = cond_dict[key]
# All the conditional key in the metadata should be used
for key in self.cond_stage_model_metadata.keys():
assert key in new_cond_dict.keys(), "%s, %s" % (
key,
str(new_cond_dict.keys()),
)
return new_cond_dict
def shared_step(self, batch, **kwargs):
if self.training:
# Classifier-free guidance
unconditional_prob_cfg = self.unconditional_prob_cfg
else:
unconditional_prob_cfg = 0.0 # TODO possible bug here
x, c = self.get_input(
batch, self.first_stage_key, unconditional_prob_cfg=unconditional_prob_cfg
)
if self.optimize_ddpm_parameter:
loss, loss_dict = self(x, self.filter_useful_cond_dict(c))
else:
loss_dict = {}
loss = None
additional_loss_for_cond_modules = self.extract_possible_loss_in_cond_dict(c)
assert isinstance(additional_loss_for_cond_modules, dict)
loss_dict.update(additional_loss_for_cond_modules)
if len(additional_loss_for_cond_modules.keys()) > 0:
for k in additional_loss_for_cond_modules.keys():
if loss is None:
loss = additional_loss_for_cond_modules[k]
else:
loss = loss + additional_loss_for_cond_modules[k]
# for k,v in additional_loss_for_cond_modules.items():
# self.log(
# "cond_stage/"+k,
# float(v),
# prog_bar=True,
# logger=True,
# on_step=True,
# on_epoch=True,
# )
if self.training:
assert loss is not None
return loss, loss_dict
def forward(self, x, c, *args, **kwargs):
t = torch.randint(
0, self.num_timesteps, (x.shape[0],), device=self.device
).long()
# assert c is not None
# c = self.get_learned_conditioning(c)
loss, loss_dict = self.p_losses(x, c, t, *args, **kwargs)
return loss, loss_dict
def reorder_cond_dict(self, cond_dict):
# To make sure the order is correct
new_cond_dict = {}
for key in self.conditioning_key:
new_cond_dict[key] = cond_dict[key]
return new_cond_dict
def apply_model(self, x_noisy, t, cond, return_ids=False):
cond = self.reorder_cond_dict(cond)
x_recon = self.model(x_noisy, t, cond_dict=cond)
if isinstance(x_recon, tuple) and not return_ids:
return x_recon[0]
else:
return x_recon
def p_losses(self, x_start, cond, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond)
loss_dict = {}
prefix = "train" if self.training else "val"
if self.parameterization == "x0":
target = x_start
elif self.parameterization == "eps":
target = noise
elif self.parameterization == "v":
target = self.get_v(x_start, noise, t)
else:
raise NotImplementedError()
# print(model_output.size(), target.size())
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
loss_dict.update({f"{prefix}/loss_simple": loss_simple.mean()})
logvar_t = self.logvar[t].to(self.device)
loss = loss_simple / torch.exp(logvar_t) + logvar_t
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
if self.learn_logvar:
loss_dict.update({f"{prefix}/loss_gamma": loss.mean()})
loss_dict.update({"logvar": self.logvar.data.mean()})
loss = self.l_simple_weight * loss.mean()
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
loss_dict.update({f"{prefix}/loss_vlb": loss_vlb})
loss += self.original_elbo_weight * loss_vlb
loss_dict.update({f"{prefix}/loss": loss})
return loss, loss_dict
def p_mean_variance(
self,
x,
c,
t,
clip_denoised: bool,
return_codebook_ids=False,
quantize_denoised=False,
return_x0=False,
score_corrector=None,
corrector_kwargs=None,
):
t_in = t
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
if score_corrector is not None:
assert self.parameterization == "eps"
model_out = score_corrector.modify_score(
self, model_out, x, t, c, **corrector_kwargs
)
if return_codebook_ids:
model_out, logits = model_out
if self.parameterization == "eps":
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == "x0":
x_recon = model_out
else:
raise NotImplementedError()
if clip_denoised:
x_recon.clamp_(-1.0, 1.0)
if quantize_denoised:
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
x_start=x_recon, x_t=x, t=t
)
if return_codebook_ids:
return model_mean, posterior_variance, posterior_log_variance, logits
elif return_x0:
return model_mean, posterior_variance, posterior_log_variance, x_recon
else:
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(
self,
x,
c,
t,
clip_denoised=False,
repeat_noise=False,
return_codebook_ids=False,
quantize_denoised=False,
return_x0=False,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
):
b, *_, device = *x.shape, x.device
outputs = self.p_mean_variance(
x=x,
c=c,
t=t,
clip_denoised=clip_denoised,
return_codebook_ids=return_codebook_ids,
quantize_denoised=quantize_denoised,
return_x0=return_x0,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
)
if return_codebook_ids:
raise DeprecationWarning("Support dropped.")
model_mean, _, model_log_variance, logits = outputs
elif return_x0:
model_mean, _, model_log_variance, x0 = outputs
else:
model_mean, _, model_log_variance = outputs
noise = noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.0:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
# no noise when t == 0
nonzero_mask = (
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous()
)
# if return_codebook_ids:
# return model_mean + nonzero_mask * (
# 0.5 * model_log_variance
# ).exp() * noise, logits.argmax(dim=1)
if return_x0:
return (
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise,
x0,
)
else:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def progressive_denoising(
self,
cond,
shape,
verbose=True,
callback=None,
quantize_denoised=False,
img_callback=None,
mask=None,
x0=None,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
batch_size=None,
x_T=None,
start_T=None,
log_every_t=None,
):
if not log_every_t:
log_every_t = self.log_every_t
timesteps = self.num_timesteps
if batch_size is not None:
b = batch_size if batch_size is not None else shape[0]
shape = [batch_size] + list(shape)
else:
b = batch_size = shape[0]
if x_T is None:
img = torch.randn(shape, device=self.device)
else:
img = x_T
intermediates = []
if cond is not None:
if isinstance(cond, dict):
cond = {
key: cond[key][:batch_size]
if not isinstance(cond[key], list)
else list(map(lambda x: x[:batch_size], cond[key]))
for key in cond
}
else:
cond = (
[c[:batch_size] for c in cond]
if isinstance(cond, list)
else cond[:batch_size]
)
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = (
tqdm(
reversed(range(0, timesteps)),
desc="Progressive Generation",
total=timesteps,
)
if verbose
else reversed(range(0, timesteps))
)
if type(temperature) == float:
temperature = [temperature] * timesteps
for i in iterator:
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != "hybrid"
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img, x0_partial = self.p_sample(
img,
cond,
ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised,
return_x0=True,
temperature=temperature[i],
noise_dropout=noise_dropout,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
)
if mask is not None:
assert x0 is not None
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1.0 - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(x0_partial)
if callback:
callback(i)
if img_callback:
img_callback(img, i)
return img, intermediates
@torch.no_grad()
def p_sample_loop(
self,
cond,
shape,
return_intermediates=False,
x_T=None,
verbose=True,
callback=None,
timesteps=None,
quantize_denoised=False,
mask=None,
x0=None,
img_callback=None,
start_T=None,
log_every_t=None,
):
if not log_every_t:
log_every_t = self.log_every_t
device = self.betas.device
b = shape[0]
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
intermediates = [img]
if timesteps is None:
timesteps = self.num_timesteps
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = (
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps)
if verbose
else reversed(range(0, timesteps))
)
if mask is not None:
assert x0 is not None
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
for i in iterator:
ts = torch.full((b,), i, device=device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != "hybrid"
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img = self.p_sample(
img,
cond,
ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised,
)
if mask is not None:
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1.0 - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
if callback:
callback(i)
if img_callback:
img_callback(img, i)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(
self,
cond,
batch_size=16,
return_intermediates=False,
x_T=None,
verbose=True,
timesteps=None,
quantize_denoised=False,
mask=None,
x0=None,
shape=None,
**kwargs,
):
if shape is None:
shape = (batch_size, self.channels, self.latent_t_size, self.latent_f_size)
if cond is not None:
if isinstance(cond, dict):
cond = {
key: cond[key][:batch_size]
if not isinstance(cond[key], list)
else list(map(lambda x: x[:batch_size], cond[key]))
for key in cond
}
else:
cond = (
[c[:batch_size] for c in cond]
if isinstance(cond, list)
else cond[:batch_size]
)
return self.p_sample_loop(
cond,
shape,
return_intermediates=return_intermediates,
x_T=x_T,
verbose=verbose,
timesteps=timesteps,
quantize_denoised=quantize_denoised,
mask=mask,
x0=x0,
**kwargs,
)
def save_waveform(self, waveform, savepath, name="outwav"):
for i in range(waveform.shape[0]):
if type(name) is str:
path = os.path.join(
savepath, "%s_%s_%s.wav" % (self.global_step, i, name)
)
elif type(name) is list:
path = os.path.join(
savepath,
"%s.wav"
% (
os.path.basename(name[i])
if (not ".wav" in name[i])
else os.path.basename(name[i]).split(".")[0]
),
)
else:
raise NotImplementedError
todo_waveform = waveform[i, 0]
todo_waveform = (
todo_waveform / np.max(np.abs(todo_waveform))
) * 0.8 # Normalize the energy of the generation output
sf.write(path, todo_waveform, samplerate=self.sampling_rate)
@torch.no_grad()
def sample_log(
self,
cond,
batch_size,
ddim,
ddim_steps,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
use_plms=False,
mask=None,
**kwargs,
):
if mask is not None:
shape = (self.channels, mask.size()[-2], mask.size()[-1])
else:
shape = (self.channels, self.latent_t_size, self.latent_f_size)
intermediate = None
if ddim and not use_plms:
ddim_sampler = DDIMSampler(self, device=self.device)
samples, intermediates = ddim_sampler.sample(
ddim_steps,
batch_size,
shape,
cond,
verbose=False,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
mask=mask,
**kwargs,
)
elif use_plms:
plms_sampler = PLMSSampler(self)
samples, intermediates = plms_sampler.sample(
ddim_steps,
batch_size,
shape,
cond,
verbose=False,
unconditional_guidance_scale=unconditional_guidance_scale,
mask=mask,
unconditional_conditioning=unconditional_conditioning,
**kwargs,
)
else:
samples, intermediates = self.sample(
cond=cond,
batch_size=batch_size,
return_intermediates=True,
unconditional_guidance_scale=unconditional_guidance_scale,
mask=mask,
unconditional_conditioning=unconditional_conditioning,
**kwargs,
)
return samples, intermediate
@torch.no_grad()
def generate_batch(
self,
batch,
ddim_steps=200,
ddim_eta=1.0,
x_T=None,
n_gen=1,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
use_plms=False,
**kwargs,
):
# Generate n_gen times and select the best
# Batch: audio, text, fnames
assert x_T is None
if use_plms:
assert ddim_steps is not None
use_ddim = ddim_steps is not None
# with self.ema_scope("Plotting"):
for i in range(1):
z, c = self.get_input(
batch,
self.first_stage_key,
unconditional_prob_cfg=0.0, # Do not output unconditional information in the c
)
c = self.filter_useful_cond_dict(c)
text = super().get_input(batch, "text")
# Generate multiple samples
batch_size = z.shape[0] * n_gen
# Generate multiple samples at a time and filter out the best
# The condition to the diffusion wrapper can have many format
for cond_key in c.keys():
if isinstance(c[cond_key], list):
for i in range(len(c[cond_key])):
c[cond_key][i] = torch.cat([c[cond_key][i]] * n_gen, dim=0)
elif isinstance(c[cond_key], dict):
for k in c[cond_key].keys():
c[cond_key][k] = torch.cat([c[cond_key][k]] * n_gen, dim=0)
else:
c[cond_key] = torch.cat([c[cond_key]] * n_gen, dim=0)
text = text * n_gen
if unconditional_guidance_scale != 1.0:
unconditional_conditioning = {}
for key in self.cond_stage_model_metadata:
model_idx = self.cond_stage_model_metadata[key]["model_idx"]
unconditional_conditioning[key] = self.cond_stage_models[
model_idx
].get_unconditional_condition(batch_size)
fnames = list(super().get_input(batch, "fname"))
samples, _ = self.sample_log(
cond=c,
batch_size=batch_size,
x_T=x_T,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
use_plms=use_plms,
)
mel = self.decode_first_stage(samples)
waveform = self.mel_spectrogram_to_waveform(
mel, savepath="", bs=None, name=fnames, save=False
)
if n_gen > 1:
best_index = []
similarity = self.clap.cos_similarity(
torch.FloatTensor(waveform).squeeze(1), text
)
for i in range(z.shape[0]):
candidates = similarity[i :: z.shape[0]]
max_index = torch.argmax(candidates).item()
best_index.append(i + max_index * z.shape[0])
waveform = waveform[best_index]
print("Similarity between generated audio and text:")
print(' '.join('{:.2f}'.format(num) for num in similarity.detach().cpu().tolist()))
print("Choose the following indexes as the output:", best_index)
return waveform
@torch.no_grad()
def generate_sample(
self,
batchs,
ddim_steps=200,
ddim_eta=1.0,
x_T=None,
n_gen=1,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
name=None,
use_plms=False,
limit_num=None,
**kwargs,
):
# Generate n_gen times and select the best
# Batch: audio, text, fnames
assert x_T is None
try:
batchs = iter(batchs)
except TypeError:
raise ValueError("The first input argument should be an iterable object")
if use_plms:
assert ddim_steps is not None
use_ddim = ddim_steps is not None
if name is None:
name = self.get_validation_folder_name()
waveform_save_path = os.path.join(self.get_log_dir(), name)
os.makedirs(waveform_save_path, exist_ok=True)
print("Waveform save path: ", waveform_save_path)
if (
"audiocaps" in waveform_save_path
and len(os.listdir(waveform_save_path)) >= 964
):
print("The evaluation has already been done at %s" % waveform_save_path)
return waveform_save_path
with self.ema_scope("Plotting"):
for i, batch in enumerate(batchs):
z, c = self.get_input(
batch,
self.first_stage_key,
unconditional_prob_cfg=0.0, # Do not output unconditional information in the c
)
if limit_num is not None and i * z.size(0) > limit_num:
break
c = self.filter_useful_cond_dict(c)
text = super().get_input(batch, "text")
# Generate multiple samples
batch_size = z.shape[0] * n_gen
# Generate multiple samples at a time and filter out the best
# The condition to the diffusion wrapper can have many format
for cond_key in c.keys():
if isinstance(c[cond_key], list):
for i in range(len(c[cond_key])):
c[cond_key][i] = torch.cat([c[cond_key][i]] * n_gen, dim=0)
elif isinstance(c[cond_key], dict):
for k in c[cond_key].keys():
c[cond_key][k] = torch.cat([c[cond_key][k]] * n_gen, dim=0)
else:
c[cond_key] = torch.cat([c[cond_key]] * n_gen, dim=0)
text = text * n_gen
if unconditional_guidance_scale != 1.0:
unconditional_conditioning = {}
for key in self.cond_stage_model_metadata:
model_idx = self.cond_stage_model_metadata[key]["model_idx"]
unconditional_conditioning[key] = self.cond_stage_models[
model_idx
].get_unconditional_condition(batch_size)
fnames = list(super().get_input(batch, "fname"))
samples, _ = self.sample_log(
cond=c,
batch_size=batch_size,
x_T=x_T,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
use_plms=use_plms,
)
mel = self.decode_first_stage(samples)
waveform = self.mel_spectrogram_to_waveform(
mel, savepath=waveform_save_path, bs=None, name=fnames, save=False
)
if n_gen > 1:
try:
best_index = []
similarity = self.clap.cos_similarity(
torch.FloatTensor(waveform).squeeze(1), text
)
for i in range(z.shape[0]):
candidates = similarity[i :: z.shape[0]]
max_index = torch.argmax(candidates).item()
best_index.append(i + max_index * z.shape[0])
waveform = waveform[best_index]
print("Similarity between generated audio and text", similarity)
print("Choose the following indexes:", best_index)
except Exception as e:
print("Warning: while calculating CLAP score (not fatal), ", e)
self.save_waveform(waveform, waveform_save_path, name=fnames)
return waveform_save_path
class DiffusionWrapper(nn.Module):
def __init__(self, diff_model_config, conditioning_key):
super().__init__()
self.diffusion_model = instantiate_from_config(diff_model_config)
self.conditioning_key = conditioning_key
for key in self.conditioning_key:
if (
"concat" in key
or "crossattn" in key
or "hybrid" in key
or "film" in key
or "noncond" in key
):
continue
else:
raise Value("The conditioning key %s is illegal" % key)
self.being_verbosed_once = False
def forward(self, x, t, cond_dict: dict = {}):
x = x.contiguous()
t = t.contiguous()
# x with condition (or maybe not)
xc = x
y = None
context_list, attn_mask_list = [], []
conditional_keys = cond_dict.keys()
for key in conditional_keys:
if "concat" in key:
xc = torch.cat([x, cond_dict[key].unsqueeze(1)], dim=1)
elif "film" in key:
if y is None:
y = cond_dict[key].squeeze(1)
else:
y = torch.cat([y, cond_dict[key].squeeze(1)], dim=-1)
elif "crossattn" in key:
# assert context is None, "You can only have one context matrix, got %s" % (cond_dict.keys())
if isinstance(cond_dict[key], dict):
for k in cond_dict[key].keys():
if "crossattn" in k:
context, attn_mask = cond_dict[key][
k
] # crossattn_audiomae_pooled: torch.Size([12, 128, 768])
else:
assert len(cond_dict[key]) == 2, (
"The context condition for %s you returned should have two element, one context one mask"
% (key)
)
context, attn_mask = cond_dict[key]
# The input to the UNet model is a list of context matrix
context_list.append(context)
attn_mask_list.append(attn_mask)
elif (
"noncond" in key
): # If you use loss function in the conditional module, include the keyword "noncond" in the return dictionary
continue
else:
raise NotImplementedError()
# if(not self.being_verbosed_once):
# print("The input shape to the diffusion model is as follows:")
# print("xc", xc.size())
# print("t", t.size())
# for i in range(len(context_list)):
# print("context_%s" % i, context_list[i].size(), attn_mask_list[i].size())
# if(y is not None):
# print("y", y.size())
# self.being_verbosed_once = True
out = self.diffusion_model(
xc, t, context_list=context_list, y=y, context_attn_mask_list=attn_mask_list
)
return out
self.warmup_step()
if (
self.state is None
and len(self.trainer.optimizers[0].state_dict()["state"].keys()) > 0
):
self.state = (
self.trainer.optimizers[0].state_dict()["state"][0]["exp_avg"].clone()
)
elif self.state is not None and batch_idx % 1000 == 0:
assert (
torch.sum(
torch.abs(
self.state
- self.trainer.optimizers[0].state_dict()["state"][0]["exp_avg"]
)
)
> 1e-7
), "Optimizer is not working"
if len(self.metrics_buffer.keys()) > 0:
for k in self.metrics_buffer.keys():
self.log(
k,
self.metrics_buffer[k],
prog_bar=False,
logger=True,
on_step=True,
on_epoch=False,
)
print(k, self.metrics_buffer[k])
self.metrics_buffer = {}
loss, loss_dict = self.shared_step(batch)
self.log_dict(
{k: float(v) for k, v in loss_dict.items()},
prog_bar=True,
logger=True,
on_step=True,
on_epoch=True,
)
self.log(
"global_step",
float(self.global_step),
prog_bar=True,
logger=True,
on_step=True,
on_epoch=False,
)
lr = self.trainer.optimizers[0].param_groups[0]["lr"]
self.log(
"lr_abs",
float(lr),
prog_bar=True,
logger=True,
on_step=True,
on_epoch=False,
)
if __name__ == "__main__":
import yaml
model_config = "/mnt/fast/nobackup/users/hl01486/projects/general_audio_generation/stable-diffusion/models/ldm/text2img256/config.yaml"
model_config = yaml.load(open(model_config, "r"), Loader=yaml.FullLoader)
latent_diffusion = LatentDiffusion(**model_config["model"]["params"])
import ipdb
ipdb.set_trace()