import gradio as gr from gradio.themes.base import Base import numpy as np import matplotlib.pyplot as plt class Seafoam(Base): pass seafoam = Seafoam() def create_error_plot(error_message): fig, ax = plt.subplots(figsize=(10, 6)) ax.text(0.5, 0.5, error_message, color='red', fontsize=16, ha='center', va='center', wrap=True) ax.axis('off') return fig def linear_interpolation(x, y, x_interp): return np.interp(x_interp, x, y) def quadratic_interpolation(x, y, x_interp): coeffs = np.polyfit(x, y, 2) return np.polyval(coeffs, x_interp) def lagrange_interpolation(x, y, x_interp): n = len(x) y_interp = np.zeros_like(x_interp, dtype=float) for i in range(n): p = y[i] for j in range(n): if i != j: p = p * (x_interp - x[j]) / (x[i] - x[j]) y_interp += p return y_interp def newton_forward_interpolation(x, y, x_interp): n = len(x) h = x[1] - x[0] # Assuming uniform spacing for simplicity F = [[0 for _ in range(n)] for _ in range(n)] for i in range(n): F[i][0] = y[i] for j in range(1, n): for i in range(n - j): F[i][j] = F[i+1][j-1] - F[i][j-1] def newton_forward(x_val): u = (x_val - x[0]) / h result = y[0] term = 1 for i in range(1, n): term *= (u - i + 1) / i result += term * F[0][i] return result return np.array([newton_forward(xi) for xi in x_interp]) def newton_backward_interpolation(x, y, x_interp): n = len(x) h = x[1] - x[0] # Assuming uniform spacing for simplicity F = [[0 for _ in range(n)] for _ in range(n)] for i in range(n): F[i][0] = y[i] for j in range(1, n): for i in range(n - 1, j - 1, -1): F[i][j] = F[i][j-1] - F[i-1][j-1] def newton_backward(x_val): u = (x_val - x[-1]) / h result = y[-1] term = 1 for i in range(1, n): term *= (u + i - 1) / i result += term * F[n-1][i] return result return np.array([newton_backward(xi) for xi in x_interp]) def create_and_edit_plot(x, y, x_interp, y_interp, method, plot_title, x_label, y_label, legend_position, label_size, log_x, x_predict=None, y_predict=None): fig, ax = plt.subplots(figsize=(10, 6)) if log_x: # Ensure all x-values are positive before setting log scale if np.any(np.array(x) <= 0): return create_error_plot("Error: All x values must be positive for logarithmic scale."), \ '

Error: All x values must be positive for logarithmic scale.

' ax.set_xscale('log') ax.scatter(x, y, color='red', label='Input points') ax.plot(x_interp, y_interp, label=f'{method} interpolant') ax.set_xlabel(x_label, fontsize=label_size) ax.set_ylabel(y_label, fontsize=label_size) ax.set_title(plot_title, fontsize=label_size + 2) ax.legend(loc=legend_position, fontsize=label_size - 2) ax.tick_params(axis='both', which='major', labelsize=label_size - 2) ax.grid(True) if x_predict is not None and y_predict is not None: ax.scatter([x_predict], [y_predict], color='green', s=100, label='Predicted point') ax.legend(loc=legend_position, fontsize=label_size - 2) return fig def interpolate_and_plot(x_input, y_input, x_predict, method, plot_title, x_label, y_label, legend_position, label_size, log_x): try: x = np.array([float(val.strip()) for val in x_input.split(',')]) y = np.array([float(val.strip()) for val in y_input.split(',')]) except ValueError: error_msg = "Error: Invalid input. Please enter comma-separated numbers." return create_error_plot(error_msg), f'

{error_msg}

' if len(x) != len(y): error_msg = "Error: Number of x and y values must be the same." return create_error_plot(error_msg), f'

{error_msg}

' if len(x) < 2: error_msg = "Error: At least two points are required for interpolation." return create_error_plot(error_msg), f'

{error_msg}

' x_interp = np.linspace(min(x), max(x), 100) # Interpolation method selection if method == "Linear": if len(x) < 2: error_msg = "Error: At least two points are required for linear interpolation." return create_error_plot(error_msg), f'

{error_msg}

' y_interp = linear_interpolation(x, y, x_interp) elif method == "Quadratic": if len(x) < 3: error_msg = "Error: At least three points are required for quadratic interpolation." return create_error_plot(error_msg), f'

{error_msg}

' y_interp = quadratic_interpolation(x, y, x_interp) elif method == "Lagrange": y_interp = lagrange_interpolation(x, y, x_interp) elif method == "Newton Forward": if not np.allclose(np.diff(x), x[1] - x[0]): error_msg = "Error: Newton Forward method requires uniform x spacing." return create_error_plot(error_msg), f'

{error_msg}

' y_interp = newton_forward_interpolation(x, y, x_interp) elif method == "Newton Backward": if not np.allclose(np.diff(x), x[1] - x[0]): error_msg = "Error: Newton Backward method requires uniform x spacing." return create_error_plot(error_msg), f'

{error_msg}

' y_interp = newton_backward_interpolation(x, y, x_interp) else: error_msg = "Error: Invalid interpolation method selected." return create_error_plot(error_msg), f'

{error_msg}

' # Predict y value for given x if x_predict is not None: try: x_predict = float(x_predict) if x_predict < min(x) or x_predict > max(x): error_msg = f"Error: Prediction x value must be between {min(x)} and {max(x)}." return create_error_plot(error_msg), f'

{error_msg}

' y_predict = np.interp(x_predict, x_interp, y_interp) fig = create_and_edit_plot(x, y, x_interp, y_interp, method, plot_title, x_label, y_label, legend_position, label_size, log_x, x_predict, y_predict) return fig, f"Predicted y value for x = {x_predict}: {y_predict:.4f}" except ValueError: error_msg = "Error: Invalid input for x prediction. Please enter a number." return create_error_plot(error_msg), f'

{error_msg}

' fig = create_and_edit_plot(x, y, x_interp, y_interp, method, plot_title, x_label, y_label, legend_position, label_size, log_x) return fig, None def toggle_plot_options(show_options): return not show_options, gr.update(visible=not show_options) with gr.Blocks(theme=seafoam) as iface: #gr.Markdown("# Interpolation App") gr.Markdown('

Interpolation App

') gr.Markdown("Enter x and y values to see the interpolation graph") show_options = gr.State(False) with gr.Row(): with gr.Column(): x_input = gr.Textbox(label="X values (comma-separated)", value="1,2,3") y_input = gr.Textbox(label="Y values (comma-separated)", value="1,8,27") x_predict = gr.Number(label="X value to predict (optional)", value=lambda: None) method = gr.Radio(["Linear", "Quadratic", "Lagrange", "Newton Forward", "Newton Backward"], label="Interpolation Method", value="Linear") submit_btn = gr.Button("Generate Plot", variant="primary", elem_id="submit-btn") edit_plot_btn = gr.Button("Edit Plot", variant="secondary") with gr.Column(): plot_output = gr.Plot(label="Interpolation Plot") result_output = gr.HTML(label="Result or Error Message") plot_options = gr.Column(visible=False) with plot_options: plot_title = gr.Textbox(label="Plot Title", value="Interpolation Plot") x_label = gr.Textbox(label="X-axis Label", value="x") y_label = gr.Textbox(label="Y-axis Label", value="y") legend_position = gr.Dropdown(["best", "upper right", "upper left", "lower left", "lower right", "right", "center left", "center right", "lower center", "upper center", "center"], label="Legend Position", value="best") label_size = gr.Slider(minimum=8, maximum=24, step=1, label="Label Size", value=16) log_x = gr.Checkbox(label="Log scale for X-axis", value=False) edit_plot_btn.click( toggle_plot_options, inputs=[show_options], outputs=[show_options, plot_options] ) inputs = [x_input, y_input, x_predict, method, plot_title, x_label, y_label, legend_position, label_size, log_x] outputs = [plot_output, result_output] submit_btn.click(interpolate_and_plot, inputs=inputs, outputs=outputs) iface.launch()