# Copyright 2024 EPFL and Apple Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Dict, List, Optional, Tuple, Union import torch import torch.nn as nn from einops import repeat from .fm_utils import build_1d_sincos_posemb, build_2d_sincos_posemb, pair class SequenceDecoderEmbedding(nn.Module): """Embedding module for sequence inputs, like captions or a sequence of objects. Args: vocab_size: Vocabulary size max_length: Maximum number of tokens in the sequence dim_tokens: Dimension of output tokens. Can be set using init method. sincos_pos_emb: Set to True (default) to use fixed 1D sin-cos positional embeddings padding_idx: Padding index for word embedding share_embedding: Set to True to share input and output embedding weights """ def __init__(self, vocab_size: int, max_length: int, dim_tokens: Optional[int] = None, sincos_pos_emb: bool = True, max_sincos_pos_emb: int = 512, padding_idx: int = 0, share_embedding: bool = True, **kwargs): super().__init__() self.vocab_size = vocab_size self.max_length = max_length self.dim_tokens = dim_tokens self.sincos_pos_emb = sincos_pos_emb self.padding_idx = padding_idx self.max_sincos_pos_emb = max_sincos_pos_emb self.share_embedding = share_embedding if self.dim_tokens is not None: self.init(dim_tokens=dim_tokens) def init(self, dim_tokens: int = 768, init_std=0.02): """ Initialize parts of embedding module that are dependent on dimension of tokens. Should be called when setting up FourM. Args: dim_tokens: Dimension of tokens init_std: Standard deviation of init """ self.dim_tokens = dim_tokens # Task embedding identifying from which task a given token comes from # Fixed-size positional embeddings. Can be interpolated to different input sizes if self.sincos_pos_emb: if self.max_length > self.max_sincos_pos_emb: raise ValueError(f"Max length ({self.max_length}) is greater than the number of posembs ({self.max_sincos_pos_emb}") # Get all posembs, than truncate up to max length pos_emb = build_1d_sincos_posemb(max_len=self.max_sincos_pos_emb, embed_dim=self.dim_tokens)[:self.max_length] self.register_buffer("pos_emb", pos_emb) else: self.pos_emb = nn.Parameter(torch.zeros(1, self.max_length, self.dim_tokens)) nn.init.normal_(self.pos_emb, std=init_std) self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens)) nn.init.normal_(self.mod_emb, std=init_std) # Token embedding self.token_emb = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.dim_tokens, padding_idx=self.padding_idx) # Output projection layer self.to_logits = nn.Linear(self.dim_tokens, self.vocab_size, bias=False) if self.share_embedding: # Share input and output embedding weights self.to_logits.weight = self.token_emb.weight @torch.jit.ignore def no_weight_decay(self): return set() def forward_embed(self, d: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Forward pass through embedding module, transforming sequence of ids to sequence of embeddings. Creates corresponding modality and positional embeddings and adds them to the dict. Args: d (Dict[str, torch.Tensor]): Modality dict, with at least the following keys: - 'tensor' (torch.Tensor): Token sequence for each batch. Shape (B, L) where B is the batch size and L is the sequence length. - 'target_mask' (torch.Tensor): Mask for valid tokens in the target sequence (set to 0 for valid tokens and 1 otherwise). Shape (B, L). Returns: Dict[str, torch.Tensor]: Modality dict with added keys: - 'x' (torch.Tensor): Embedded token sequence. Shape (B, L, D) where D is the embedding dimension. - 'emb' (torch.Tensor): Sum of positional and modality embeddings for the target sequence. Shape (B, L, D). - 'ids' (torch.Tensor): Original token sequence from input dict. Shape (B, L). """ ids = d['tensor'] B = ids.shape[0] assert self.dim_tokens is not None, 'Need to call init(dim_tokens) function first' # Map to embedding x = self.token_emb(ids) expanded_pos_emb = repeat(self.pos_emb, "() n d -> b n d", b=B) # Target pos encoding target_mask = d['target_mask'] target_pos_id = (~target_mask).int().cumsum(dim=1) - 1 target_pos_id[target_mask] = 0 # Sometimes target sequence is over max length, it will be truncated in decoder target_pos_id[target_pos_id >= self.max_length] = 0 target_pos_emb = torch.gather(expanded_pos_emb, dim=1, index=repeat(target_pos_id, "b n -> b n d", d=expanded_pos_emb.shape[2])) target_pos_emb[target_mask] = 0 x_emb = target_pos_emb + self.mod_emb d['x'] = x d['emb'] = x_emb d['ids'] = d['tensor'] return d def forward_logits(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass through output projection layer, transforming sequence of embeddings to logits. Args: x (torch.Tensor): Output tokens from the decoder. Shape (B, M, D) Returns: torch.Tensor: Logits for each token in the sequence. Shape (B, M, V) """ logits = self.to_logits(x) return logits class ImageTokenDecoderEmbedding(nn.Module): """Embedding module for tokenized spatial inputs. Args: vocab_size: Vocabulary size patch_size: Int or tuple of the patch size over the full image size. dim_tokens: Dimension of output tokens. Can be set using init method. sincos_pos_emb: Set to True (default) to use fixed 2D sin-cos positional embeddings image_size: Default image size. Used to initialize size of positional embeddings. share_embedding: Set to True to share input and output embedding weights """ def __init__(self, vocab_size: int, patch_size: Union[int, Tuple[int,int]] = 16, dim_tokens: Optional[int] = None, sincos_pos_emb: bool = True, image_size: Union[int, Tuple[int]] = 224, share_embedding: bool = True, **kwargs): super().__init__() self.vocab_size = vocab_size self.patch_size = pair(patch_size) self.dim_tokens = dim_tokens self.sincos_pos_emb = sincos_pos_emb self.image_size = pair(image_size) self.num_patches = (self.image_size[0] // self.patch_size[0]) * (self.image_size[1] // self.patch_size[1]) self.share_embedding = share_embedding if self.dim_tokens is not None: self.init(dim_tokens=dim_tokens) def init(self, dim_tokens: int = 768, init_std=0.02): """ Initialize parts of module that are dependent on dimension of tokens. Should be called when setting up FourM. Args: dim_tokens: Dimension of tokens init_std: Standard deviation of init """ self.dim_tokens = dim_tokens # Task embedding identifying from which task a given token comes from # Fixed-size positional embeddings. Can be interpolated to different input sizes h_posemb = self.image_size[0] // self.patch_size[0] w_posemb = self.image_size[1] // self.patch_size[1] if self.sincos_pos_emb: pos_emb = build_2d_sincos_posemb(h=h_posemb, w=w_posemb, embed_dim=self.dim_tokens) self.register_buffer("pos_emb", pos_emb) else: self.pos_emb = nn.Parameter(torch.zeros(1, (h_posemb * w_posemb), self.dim_tokens)) nn.init.normal_(self.pos_emb, std=init_std) self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens)) nn.init.normal_(self.mod_emb, std=init_std) # Token embedding (not needed if only masked tokens are given as input, but can be useful to train Token Critic) self.token_emb = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.dim_tokens) # Output projection layer self.to_logits = nn.Linear(self.dim_tokens, self.vocab_size, bias=False) if self.share_embedding: # Share input and output embedding weights self.to_logits.weight = self.token_emb.weight @torch.jit.ignore def no_weight_decay(self): return set() def forward_embed(self, d: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Forward pass through the embedding module, transforming tokenized spatial inputs to embeddings. Creates corresponding modality and positional embeddings and adds them to the dict. Args: d (Dict[str, torch.Tensor]): Modality dict, with at least the following key: - 'tensor' (torch.Tensor): Modality tokens for each batch (e.g. from tokenized images). Shape (B, H, W) where B is the batch size, H and W are height and width after tokenization. Returns: Dict[str, torch.Tensor]: Modality dict with added keys: - 'x' (torch.Tensor): Embedded token sequence, which is replaced by mask tokens in the 4M decoder. Shape (B, H*W, D) where D is the embedding dimension. - 'emb' (torch.Tensor): Sum of positional and modality embeddings for the token sequence. Shape (B, H*W, D). - 'ids' (torch.Tensor): Reshaped token sequence from input dict, flattened in the spatial dimensions. Shape (B, H*W). """ ids = d['tensor'] B = ids.shape[0] ids = ids.reshape(B, -1) # Map to embedding x = self.token_emb(ids) # Create positional embedding + modality embedding x_emb = repeat(self.pos_emb + self.mod_emb, '() n d -> b n d', b=B) d['x'] = x d['emb'] = x_emb d['ids'] = ids return d def forward_logits(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass through output projection layer, transforming sequence of embeddings to logits. Args: x (torch.Tensor): Output tokens from the decoder. Shape (B, M, D) Returns: torch.Tensor: Logits for each token in the sequence. Shape (B, M, V) """ logits = self.to_logits(x) return logits