# Copyright 2024 EPFL and Apple Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------- # Some functions are based on the timm code base # https://github.com/huggingface/pytorch-image-models # -------------------------------------------------------- import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange def pair(t): return t if isinstance(t, tuple) else (t, t) def softmax1(tensor): # See https://www.evanmiller.org/attention-is-off-by-one.html return F.pad(tensor, (0,1)).softmax(dim=-1)[...,:-1] def build_1d_sincos_posemb(max_len, embed_dim=1024, temperature=10000.): """Sine-cosine positional embeddings from MoCo-v3, adapted back to 1d Returns positional embedding of shape (1, N, D) """ arange = torch.arange(max_len, dtype=torch.float32) # Shape (N,) assert embed_dim % 2 == 0, 'Embed dimension must be divisible by 2 for 1D sin-cos position embedding' pos_dim = embed_dim // 2 omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim # Shape (D/2,) omega = 1. / (temperature ** omega) out = torch.einsum('n,d->nd', [arange, omega]) # Outer product, shape (N, D/2) pos_emb = torch.cat([torch.sin(out), torch.cos(out)], dim=1).unsqueeze(0) # Shape (1, N, D) return pos_emb def build_2d_sincos_posemb(h, w, embed_dim=1024, temperature=10000.0): """Sine-cosine positional embeddings as used in MoCo-v3 Returns positional embedding of shape (1, N, D) where N = W*H """ grid_w = torch.arange(w, dtype=torch.float32) # Shape (W,) grid_h = torch.arange(h, dtype=torch.float32) # Shape (H, ) grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij') # Shapes (W, H) assert embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding' pos_dim = embed_dim // 4 omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim # Shape (D/4,) omega = 1. / (temperature ** omega) out_w = torch.einsum('n,d->nd', [grid_w.reshape(-1), omega]) # Outer product, shape (W*H, D/4) out_h = torch.einsum('n,d->nd', [grid_h.reshape(-1), omega]) # Outer product, shape (W*H, D/4) pos_emb = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], dim=1).unsqueeze(0) # Shape (1, W*H, D) return pos_emb def drop_path(x, drop_prob: float = 0., training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Implementation from timm: https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class LayerNorm(nn.Module): """Custom implementation of LayerNorm with the option to disable the bias term""" def __init__(self, normalized_shape: int, eps=1e-5, bias=True): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(normalized_shape)) if bias: self.bias = nn.Parameter(torch.zeros(normalized_shape)) else: self.register_buffer("bias", torch.zeros(normalized_shape)) # Normalized shape must be a tuple for F.layer_norm self.normalized_shape = (normalized_shape,) def forward(self, x): return nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, eps=self.eps) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., bias=True): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features, bias=bias) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.fc2(x) x = self.drop(x) return x class GatedMlp(nn.Module): """Implements SwiGLU and other gated feed-forward layers from Noam Shazeer's paper: https://arxiv.org/abs/2002.05202 """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, bias=True): super().__init__() out_features = out_features or in_features # If gated, multiply hidden_dim by 2/3 to account for extra matmul hidden_features = int(2 * (hidden_features or in_features) / 3) self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features, bias=bias) self.fc3 = nn.Linear(in_features, hidden_features, bias=bias) def forward(self, x): x = self.fc2(self.act(self.fc1(x)) * self.fc3(x)) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, proj_bias=True, attn_drop=0., proj_drop=0., allow_zero_attn=False): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.allow_zero_attn = allow_zero_attn self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, mask=None): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale if mask is not None: mask = mask.unsqueeze(1) # Unsqueeze attention mask for multi-head attn = attn.masked_fill(mask, -torch.finfo(attn.dtype).max) if self.allow_zero_attn: attn = softmax1(attn) else: attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class CrossAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, proj_bias=True, attn_drop=0., proj_drop=0., allow_zero_attn=False): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.allow_zero_attn = allow_zero_attn self.q = nn.Linear(dim, dim, bias=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, context, mask=None): B, N, C = x.shape _, M, _ = context.shape q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) kv = self.kv(context).reshape(B, M, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] attn = (q @ k.transpose(-2, -1)) * self.scale if mask is not None: mask = rearrange(mask, "b n m -> b 1 n m") # Unsqueeze / reshape for multi-head attn = attn.masked_fill(mask, -torch.finfo(attn.dtype).max) if self.allow_zero_attn: attn = softmax1(attn) else: attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class NormAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, proj_bias=True, norm_layer=nn.LayerNorm, attn_drop=0., proj_drop=0., allow_zero_attn=False): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.allow_zero_attn = allow_zero_attn self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) self.q_norm = norm_layer(head_dim) self.k_norm = norm_layer(head_dim) def forward(self, x, mask=None): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) q = self.q_norm(q) k = self.k_norm(k) attn = (q @ k.transpose(-2, -1)) * self.scale if mask is not None: mask = mask.unsqueeze(1) # Unsqueeze for multi-head attn = attn.masked_fill(mask, -torch.finfo(attn.dtype).max) if self.allow_zero_attn: attn = softmax1(attn) else: attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class NormCrossAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, proj_bias=True, norm_layer=nn.LayerNorm, attn_drop=0., proj_drop=0., allow_zero_attn=False): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.allow_zero_attn = allow_zero_attn self.q = nn.Linear(dim, dim, bias=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) self.q_norm = norm_layer(head_dim) self.k_norm = norm_layer(head_dim) def forward(self, x, context, mask=None): B, N, C = x.shape _, M, _ = context.shape q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) kv = self.kv(context).reshape(B, M, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] q = self.q_norm(q) k = self.k_norm(k) attn = (q @ k.transpose(-2, -1)) * self.scale if mask is not None: mask = rearrange(mask, "b n m -> b 1 n m") # Unsqueeze / reshape for multi-head attn = attn.masked_fill(mask, -torch.finfo(attn.dtype).max) if self.allow_zero_attn: attn = softmax1(attn) else: attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=True, proj_bias=True, mlp_bias=True, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, gated_mlp=False, qk_norm=False, allow_zero_attn=False): super().__init__() self.norm1 = norm_layer(dim) if not qk_norm: self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn) else: self.attn = NormAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, norm_layer=norm_layer, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) if not gated_mlp: self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, bias=mlp_bias, drop=drop) else: self.mlp = GatedMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, bias=mlp_bias) def forward(self, x, mask=None): x = x + self.drop_path(self.attn(self.norm1(x), mask)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class DecoderBlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=True, proj_bias=True, mlp_bias=True, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, gated_mlp=False, qk_norm=False, allow_zero_attn=False): super().__init__() self.norm1 = norm_layer(dim) if not qk_norm: self.self_attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn) self.cross_attn = CrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn) else: self.self_attn = NormAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, norm_layer=norm_layer, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn) self.cross_attn = NormCrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, norm_layer=norm_layer, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn) self.query_norm = norm_layer(dim) self.context_norm = norm_layer(dim) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) if not gated_mlp: self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, bias=mlp_bias, drop=drop) else: self.mlp = GatedMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, bias=mlp_bias) def forward(self, x, context, sa_mask=None, xa_mask=None): x = x + self.drop_path(self.self_attn(self.norm1(x), sa_mask)) x = x + self.drop_path(self.cross_attn(self.query_norm(x), self.context_norm(context), xa_mask)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class CrossAttentionBlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, gated_mlp=False, allow_zero_attn=False): super().__init__() self.cross_attn = CrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn) self.query_norm = norm_layer(dim) self.context_norm = norm_layer(dim) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) if not gated_mlp: self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) else: self.mlp = GatedMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer) def forward(self, x, context, xa_mask=None, **kwargs): x = x + self.drop_path(self.cross_attn(self.query_norm(x), self.context_norm(context), xa_mask)) x = x + self.drop_path(self.mlp(self.norm2(x))) return x