import gradio as gr import time from pprint import pprint import numpy import os from pathlib import Path from FastT5 import OnnxT5, get_onnx_runtime_sessions from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoTokenizer from flashtext import KeywordProcessor from nltk.tokenize import sent_tokenize from similarity.normalized_levenshtein import NormalizedLevenshtein from nltk.corpus import brown from nltk.corpus import stopwords from nltk import FreqDist import nltk import pke import string from collections import OrderedDict from sense2vec import Sense2Vec import spacy import random import torch commands = [ "curl -LO https://github.com/explosion/sense2vec/releases/download/v1.0.0/s2v_reddit_2015_md.tar.gz", "tar -xvf s2v_reddit_2015_md.tar.gz", ] for command in commands: return_code = os.system(command) if return_code == 0: print(f"Command '{command}' executed successfully") else: print(f"Command '{command}' failed with return code {return_code}") def greedy_decoding(inp_ids, attn_mask, model, tokenizer): greedy_output = model.generate( input_ids=inp_ids, attention_mask=attn_mask, max_length=256) Question = tokenizer.decode( greedy_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) return Question.strip().capitalize() def beam_search_decoding(inp_ids, attn_mask, model, tokenizer): beam_output = model.generate(input_ids=inp_ids, attention_mask=attn_mask, max_length=256, num_beams=10, num_return_sequences=3, no_repeat_ngram_size=2, early_stopping=True ) Questions = [tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True) for out in beam_output] return [Question.strip().capitalize() for Question in Questions] def topkp_decoding(inp_ids, attn_mask, model, tokenizer): topkp_output = model.generate(input_ids=inp_ids, attention_mask=attn_mask, max_length=256, do_sample=True, top_k=40, top_p=0.80, num_return_sequences=3, no_repeat_ngram_size=2, early_stopping=True ) Questions = [tokenizer.decode( out, skip_special_tokens=True, clean_up_tokenization_spaces=True) for out in topkp_output] return [Question.strip().capitalize() for Question in Questions] nltk.download('brown') nltk.download('stopwords') nltk.download('popular') def MCQs_available(word, s2v): word = word.replace(" ", "_") sense = s2v.get_best_sense(word) return sense is not None def edits(word): "All edits that are one edit away from `word`." letters = f'abcdefghijklmnopqrstuvwxyz {string.punctuation}' splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes = [L + R[1:] for L, R in splits if R] transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R) > 1] replaces = [L + c + R[1:] for L, R in splits if R for c in letters] inserts = [L + c + R for L, R in splits for c in letters] return set(deletes + transposes + replaces + inserts) def sense2vec_get_words(word, s2v): output = [] word_preprocessed = word.translate( word.maketrans("", "", string.punctuation)) word_preprocessed = word_preprocessed.lower() word_edits = edits(word_preprocessed) word = word.replace(" ", "_") sense = s2v.get_best_sense(word) most_similar = s2v.most_similar(sense, n=15) compare_list = [word_preprocessed] for each_word in most_similar: append_word = each_word[0].split("|")[0].replace("_", " ") append_word = append_word.strip() append_word_processed = append_word.lower() append_word_processed = append_word_processed.translate( append_word_processed.maketrans("", "", string.punctuation)) if append_word_processed not in compare_list and word_preprocessed not in append_word_processed and append_word_processed not in word_edits: output.append(append_word.title()) compare_list.append(append_word_processed) return list(OrderedDict.fromkeys(output)) def get_options(answer, s2v): distractors = [] try: distractors = sense2vec_get_words(answer, s2v) if len(distractors) > 0: print(" Sense2vec_distractors successful for word : ", answer) return distractors, "sense2vec" except Exception: print(" Sense2vec_distractors failed for word : ", answer) return distractors, "None" def tokenize_sentences(text): sentences = [sent_tokenize(text)] sentences = [y for x in sentences for y in x] return [sentence.strip() for sentence in sentences if len(sentence) > 20] def get_sentences_for_keyword(keywords, sentences): keyword_processor = KeywordProcessor() keyword_sentences = {} for word in keywords: word = word.strip() keyword_sentences[word] = [] keyword_processor.add_keyword(word) for sentence in sentences: keywords_found = keyword_processor.extract_keywords(sentence) for key in keywords_found: keyword_sentences[key].append(sentence) for key, values in keyword_sentences.items(): values = sorted(values, key=len, reverse=True) keyword_sentences[key] = values delete_keys = [k for k, v in keyword_sentences.items() if len(v) == 0] for del_key in delete_keys: del keyword_sentences[del_key] return keyword_sentences def is_far(words_list, currentword, thresh, normalized_levenshtein): threshold = thresh score_list = [ normalized_levenshtein.distance(word.lower(), currentword.lower()) for word in words_list ] return min(score_list) >= threshold def filter_phrases(phrase_keys, max, normalized_levenshtein): filtered_phrases = [] if len(phrase_keys) > 0: filtered_phrases.append(phrase_keys[0]) for ph in phrase_keys[1:]: if is_far(filtered_phrases, ph, 0.7, normalized_levenshtein): filtered_phrases.append(ph) if len(filtered_phrases) >= max: break return filtered_phrases def get_nouns_multipartite(text): out = [] extractor = pke.unsupervised.MultipartiteRank() extractor.load_document(input=text, language='en') pos = {'PROPN', 'NOUN'} stoplist = list(string.punctuation) stoplist += stopwords.words('english') extractor.candidate_selection(pos=pos) # 4. build the Multipartite graph and rank candidates using random walk, # alpha controls the weight adjustment mechanism, see TopicRank for # threshold/method parameters. try: extractor.candidate_weighting(alpha=1.1, threshold=0.75, method='average') except Exception: return out keyphrases = extractor.get_n_best(n=10) out.extend(key[0] for key in keyphrases) return out def get_phrases(doc): phrases = {} for np in doc.noun_chunks: phrase = np.text len_phrase = len(phrase.split()) if len_phrase > 1: phrases[phrase] = 1 if phrase not in phrases else phrases[phrase]+1 phrase_keys = list(phrases.keys()) phrase_keys = sorted(phrase_keys, key=lambda x: len(x), reverse=True) return phrase_keys[:50] def get_keywords(nlp, text, max_keywords, s2v, fdist, normalized_levenshtein, no_of_sentences): doc = nlp(text) max_keywords = int(max_keywords) keywords = get_nouns_multipartite(text) keywords = sorted(keywords, key=lambda x: fdist[x]) keywords = filter_phrases(keywords, max_keywords, normalized_levenshtein) phrase_keys = get_phrases(doc) filtered_phrases = filter_phrases( phrase_keys, max_keywords, normalized_levenshtein) total_phrases = keywords + filtered_phrases total_phrases_filtered = filter_phrases(total_phrases, min( max_keywords, 2*no_of_sentences), normalized_levenshtein) answers = [] for answer in total_phrases_filtered: if answer not in answers and MCQs_available(answer, s2v): answers.append(answer) return answers[:max_keywords] def generate_questions_mcq(keyword_sent_mapping, device, tokenizer, model, sense2vec, normalized_levenshtein): batch_text = [] answers = keyword_sent_mapping.keys() for answer in answers: txt = keyword_sent_mapping[answer] context = f"context: {txt}" text = f"{context} answer: {answer} " batch_text.append(text) encoding = tokenizer.batch_encode_plus( batch_text, pad_to_max_length=True, return_tensors="pt") print("Running model for generation") input_ids, attention_masks = encoding["input_ids"].to( device), encoding["attention_mask"].to(device) with torch.no_grad(): outs = model.generate(input_ids=input_ids, attention_mask=attention_masks, max_length=150) output_array = {"questions": []} # print(outs) for index, val in enumerate(answers): out = outs[index, :] dec = tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True) Question = dec.replace("question:", "") Question = Question.strip() individual_question = { "question_statement": Question, "question_type": "MCQ", "answer": val, "id": index + 1, } individual_question["options"], individual_question["options_algorithm"] = get_options( val, sense2vec) individual_question["options"] = filter_phrases( individual_question["options"], 10, normalized_levenshtein) index = 3 individual_question["extra_options"] = individual_question["options"][index:] individual_question["options"] = individual_question["options"][:index] individual_question["context"] = keyword_sent_mapping[val] if len(individual_question["options"]) > 0: output_array["questions"].append(individual_question) return output_array # for normal one word questions def generate_normal_questions(keyword_sent_mapping, device, tokenizer, model): batch_text = [] answers = keyword_sent_mapping.keys() for answer in answers: txt = keyword_sent_mapping[answer] context = f"context: {txt}" text = f"{context} answer: {answer} " batch_text.append(text) encoding = tokenizer.batch_encode_plus( batch_text, pad_to_max_length=True, return_tensors="pt") print("Running model for generation") input_ids, attention_masks = encoding["input_ids"].to( device), encoding["attention_mask"].to(device) with torch.no_grad(): outs = model.generate(input_ids=input_ids, attention_mask=attention_masks, max_length=150) output_array = {"questions": []} for index, val in enumerate(answers): out = outs[index, :] dec = tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True) Question = dec.replace('question:', '') Question = Question.strip() individual_quest = { 'Question': Question, 'Answer': val, "id": index + 1, "context": keyword_sent_mapping[val], } output_array["questions"].append(individual_quest) return output_array def random_choice(): a = random.choice([0, 1]) return bool(a) nltk.download('brown') nltk.download('stopwords') nltk.download('popular') class QGen: def __init__(self): trained_model_path = './model/' pretrained_model_name = Path(trained_model_path).stem encoder_path = os.path.join( trained_model_path, f"{pretrained_model_name}-encoder_quantized.onnx") decoder_path = os.path.join( trained_model_path, f"{pretrained_model_name}-decoder_quantized.onnx") init_decoder_path = os.path.join( trained_model_path, f"{pretrained_model_name}-init-decoder_quantized.onnx") model_paths = encoder_path, decoder_path, init_decoder_path model_sessions = get_onnx_runtime_sessions(model_paths) model = OnnxT5(trained_model_path, model_sessions) self.tokenizer = AutoTokenizer.from_pretrained(trained_model_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # model.eval() self.device = device self.model = model self.nlp = spacy.load('en_core_web_sm') self.s2v = Sense2Vec().from_disk('s2v_old') self.fdist = FreqDist(brown.words()) self.normalized_levenshtein = NormalizedLevenshtein() self.set_seed(42) def set_seed(self, seed): numpy.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) def predict_mcq(self, payload): start = time.time() inp = { "input_text": payload.get("input_text"), "max_questions": payload.get("max_questions", 4) } text = inp['input_text'] sentences = tokenize_sentences(text) joiner = " " modified_text = joiner.join(sentences) keywords = get_keywords( self.nlp, modified_text, inp['max_questions'], self.s2v, self.fdist, self.normalized_levenshtein, len(sentences)) keyword_sentence_mapping = get_sentences_for_keyword( keywords, sentences) for k in keyword_sentence_mapping.keys(): text_snippet = " ".join(keyword_sentence_mapping[k][:3]) keyword_sentence_mapping[k] = text_snippet final_output = {} if len(keyword_sentence_mapping.keys()) != 0: try: generated_questions = generate_questions_mcq( keyword_sentence_mapping, self.device, self.tokenizer, self.model, self.s2v, self.normalized_levenshtein) except Exception: return final_output end = time.time() final_output["statement"] = modified_text final_output["questions"] = generated_questions["questions"] final_output["time_taken"] = end-start if torch.device == 'cuda': torch.cuda.empty_cache() return final_output def predict_shortq(self, payload): inp = { "input_text": payload.get("input_text"), "max_questions": payload.get("max_questions", 4) } text = inp['input_text'] sentences = tokenize_sentences(text) joiner = " " modified_text = joiner.join(sentences) keywords = get_keywords( self.nlp, modified_text, inp['max_questions'], self.s2v, self.fdist, self.normalized_levenshtein, len(sentences)) keyword_sentence_mapping = get_sentences_for_keyword( keywords, sentences) for k in keyword_sentence_mapping.keys(): text_snippet = " ".join(keyword_sentence_mapping[k][:3]) keyword_sentence_mapping[k] = text_snippet final_output = {} if len(keyword_sentence_mapping.keys()) == 0: print('ZERO') return final_output else: generated_questions = generate_normal_questions( keyword_sentence_mapping, self.device, self.tokenizer, self.model) print(generated_questions) final_output["statement"] = modified_text final_output["questions"] = generated_questions["questions"] if torch.device == 'cuda': torch.cuda.empty_cache() return final_output def paraphrase(self, payload): start = time.time() inp = { "input_text": payload.get("input_text"), "max_questions": payload.get("max_questions", 3) } text = inp['input_text'] num = inp['max_questions'] self.sentence = text self.text = f"paraphrase: {self.sentence} " encoding = self.tokenizer.encode_plus( self.text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to( self.device), encoding["attention_mask"].to(self.device) beam_outputs = self.model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=50, num_beams=50, num_return_sequences=num, no_repeat_ngram_size=2, early_stopping=True ) # print ("\nOriginal Question ::") # print (text) # print ("\n") # print ("Paraphrased Questions :: ") final_outputs = [] for beam_output in beam_outputs: sent = self.tokenizer.decode( beam_output, skip_special_tokens=True, clean_up_tokenization_spaces=True) if sent.lower() != self.sentence.lower() and sent not in final_outputs: final_outputs.append(sent) output = { 'Question': text, 'Count': num, 'Paraphrased Questions': final_outputs, } for i, final_output in enumerate(final_outputs): print(f"{i}: {final_output}") if torch.device == 'cuda': torch.cuda.empty_cache() return output class BoolQGen: def __init__(self): self.tokenizer = T5Tokenizer.from_pretrained('t5-base') model = T5ForConditionalGeneration.from_pretrained( 'ramsrigouthamg/t5_boolean_questions') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # model.eval() self.device = device self.model = model self.set_seed(42) def set_seed(self, seed): numpy.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) def random_choice(self): a = random.choice([0, 1]) return bool(a) def predict_boolq(self, payload): start = time.time() inp = { "input_text": payload.get("input_text"), "max_questions": payload.get("max_questions", 4) } text = inp['input_text'] num = inp['max_questions'] sentences = tokenize_sentences(text) joiner = " " modified_text = joiner.join(sentences) answer = self.random_choice() form = f"truefalse: {modified_text} passage: {answer} " encoding = self.tokenizer.encode_plus(form, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to( self.device), encoding["attention_mask"].to(self.device) output = beam_search_decoding( input_ids, attention_masks, self.model, self.tokenizer) if torch.device == 'cuda': torch.cuda.empty_cache() return {'Text': text, 'Count': num, 'Boolean Questions': output} class AnswerPredictor: def __init__(self): self.tokenizer = T5Tokenizer.from_pretrained('t5-base') model = T5ForConditionalGeneration.from_pretrained('Parth/boolean') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # model.eval() self.device = device self.model = model self.set_seed(42) def set_seed(self, seed): numpy.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) def greedy_decoding(self, attn_mask, model, tokenizer): greedy_output = model.generate( input_ids=self, attention_mask=attn_mask, max_length=256 ) Question = tokenizer.decode( greedy_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) return Question.strip().capitalize() def predict_answer(self, payload): start = time.time() inp = { "input_text": payload.get("input_text"), "input_question": payload.get("input_question") } context = inp["input_text"] question = inp["input_question"] input_text = f"question: {question} context: {context} " encoding = self.tokenizer.encode_plus(input_text, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to( self.device), encoding["attention_mask"].to(self.device) greedy_output = self.model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256) Question = self.tokenizer.decode( greedy_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) return Question.strip().capitalize() qg = QGen() # Define the QGen function def generate_mcq(input_text, max_questions): payload = { "input_text": input_text, "max_questions": max_questions } return qg.predict_mcq(payload) # Create a Gradio interface iface = gr.Interface( fn=generate_mcq, inputs=[ gr.Textbox(label="Input Text"), gr.Number(label="Max Questions", value=1, maximum=10) ], outputs=gr.JSON(label="Generated MCQs"), ) # Launch the Gradio app iface.launch()