questgen / app.py
ViXuan's picture
Fixed gradio UI
5b61be5
raw
history blame contribute delete
No virus
22 kB
import gradio as gr
import time
from pprint import pprint
import numpy
import os
from pathlib import Path
from FastT5 import OnnxT5, get_onnx_runtime_sessions
from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoTokenizer
from flashtext import KeywordProcessor
from nltk.tokenize import sent_tokenize
from similarity.normalized_levenshtein import NormalizedLevenshtein
from nltk.corpus import brown
from nltk.corpus import stopwords
from nltk import FreqDist
import nltk
import pke
import string
from collections import OrderedDict
from sense2vec import Sense2Vec
import spacy
import random
import torch
commands = [
"curl -LO https://github.com/explosion/sense2vec/releases/download/v1.0.0/s2v_reddit_2015_md.tar.gz",
"tar -xvf s2v_reddit_2015_md.tar.gz",
]
for command in commands:
return_code = os.system(command)
if return_code == 0:
print(f"Command '{command}' executed successfully")
else:
print(f"Command '{command}' failed with return code {return_code}")
def greedy_decoding(inp_ids, attn_mask, model, tokenizer):
greedy_output = model.generate(
input_ids=inp_ids, attention_mask=attn_mask, max_length=256)
Question = tokenizer.decode(
greedy_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
return Question.strip().capitalize()
def beam_search_decoding(inp_ids, attn_mask, model, tokenizer):
beam_output = model.generate(input_ids=inp_ids,
attention_mask=attn_mask,
max_length=256,
num_beams=10,
num_return_sequences=3,
no_repeat_ngram_size=2,
early_stopping=True
)
Questions = [tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True) for out in
beam_output]
return [Question.strip().capitalize() for Question in Questions]
def topkp_decoding(inp_ids, attn_mask, model, tokenizer):
topkp_output = model.generate(input_ids=inp_ids,
attention_mask=attn_mask,
max_length=256,
do_sample=True,
top_k=40,
top_p=0.80,
num_return_sequences=3,
no_repeat_ngram_size=2,
early_stopping=True
)
Questions = [tokenizer.decode(
out, skip_special_tokens=True, clean_up_tokenization_spaces=True) for out in topkp_output]
return [Question.strip().capitalize() for Question in Questions]
nltk.download('brown')
nltk.download('stopwords')
nltk.download('popular')
def MCQs_available(word, s2v):
word = word.replace(" ", "_")
sense = s2v.get_best_sense(word)
return sense is not None
def edits(word):
"All edits that are one edit away from `word`."
letters = f'abcdefghijklmnopqrstuvwxyz {string.punctuation}'
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
deletes = [L + R[1:] for L, R in splits if R]
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R) > 1]
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
inserts = [L + c + R for L, R in splits for c in letters]
return set(deletes + transposes + replaces + inserts)
def sense2vec_get_words(word, s2v):
output = []
word_preprocessed = word.translate(
word.maketrans("", "", string.punctuation))
word_preprocessed = word_preprocessed.lower()
word_edits = edits(word_preprocessed)
word = word.replace(" ", "_")
sense = s2v.get_best_sense(word)
most_similar = s2v.most_similar(sense, n=15)
compare_list = [word_preprocessed]
for each_word in most_similar:
append_word = each_word[0].split("|")[0].replace("_", " ")
append_word = append_word.strip()
append_word_processed = append_word.lower()
append_word_processed = append_word_processed.translate(
append_word_processed.maketrans("", "", string.punctuation))
if append_word_processed not in compare_list and word_preprocessed not in append_word_processed and append_word_processed not in word_edits:
output.append(append_word.title())
compare_list.append(append_word_processed)
return list(OrderedDict.fromkeys(output))
def get_options(answer, s2v):
distractors = []
try:
distractors = sense2vec_get_words(answer, s2v)
if len(distractors) > 0:
print(" Sense2vec_distractors successful for word : ", answer)
return distractors, "sense2vec"
except Exception:
print(" Sense2vec_distractors failed for word : ", answer)
return distractors, "None"
def tokenize_sentences(text):
sentences = [sent_tokenize(text)]
sentences = [y for x in sentences for y in x]
return [sentence.strip() for sentence in sentences if len(sentence) > 20]
def get_sentences_for_keyword(keywords, sentences):
keyword_processor = KeywordProcessor()
keyword_sentences = {}
for word in keywords:
word = word.strip()
keyword_sentences[word] = []
keyword_processor.add_keyword(word)
for sentence in sentences:
keywords_found = keyword_processor.extract_keywords(sentence)
for key in keywords_found:
keyword_sentences[key].append(sentence)
for key, values in keyword_sentences.items():
values = sorted(values, key=len, reverse=True)
keyword_sentences[key] = values
delete_keys = [k for k, v in keyword_sentences.items() if len(v) == 0]
for del_key in delete_keys:
del keyword_sentences[del_key]
return keyword_sentences
def is_far(words_list, currentword, thresh, normalized_levenshtein):
threshold = thresh
score_list = [
normalized_levenshtein.distance(word.lower(), currentword.lower())
for word in words_list
]
return min(score_list) >= threshold
def filter_phrases(phrase_keys, max, normalized_levenshtein):
filtered_phrases = []
if len(phrase_keys) > 0:
filtered_phrases.append(phrase_keys[0])
for ph in phrase_keys[1:]:
if is_far(filtered_phrases, ph, 0.7, normalized_levenshtein):
filtered_phrases.append(ph)
if len(filtered_phrases) >= max:
break
return filtered_phrases
def get_nouns_multipartite(text):
out = []
extractor = pke.unsupervised.MultipartiteRank()
extractor.load_document(input=text, language='en')
pos = {'PROPN', 'NOUN'}
stoplist = list(string.punctuation)
stoplist += stopwords.words('english')
extractor.candidate_selection(pos=pos)
# 4. build the Multipartite graph and rank candidates using random walk,
# alpha controls the weight adjustment mechanism, see TopicRank for
# threshold/method parameters.
try:
extractor.candidate_weighting(alpha=1.1,
threshold=0.75,
method='average')
except Exception:
return out
keyphrases = extractor.get_n_best(n=10)
out.extend(key[0] for key in keyphrases)
return out
def get_phrases(doc):
phrases = {}
for np in doc.noun_chunks:
phrase = np.text
len_phrase = len(phrase.split())
if len_phrase > 1:
phrases[phrase] = 1 if phrase not in phrases else phrases[phrase]+1
phrase_keys = list(phrases.keys())
phrase_keys = sorted(phrase_keys, key=lambda x: len(x), reverse=True)
return phrase_keys[:50]
def get_keywords(nlp, text, max_keywords, s2v, fdist, normalized_levenshtein, no_of_sentences):
doc = nlp(text)
max_keywords = int(max_keywords)
keywords = get_nouns_multipartite(text)
keywords = sorted(keywords, key=lambda x: fdist[x])
keywords = filter_phrases(keywords, max_keywords, normalized_levenshtein)
phrase_keys = get_phrases(doc)
filtered_phrases = filter_phrases(
phrase_keys, max_keywords, normalized_levenshtein)
total_phrases = keywords + filtered_phrases
total_phrases_filtered = filter_phrases(total_phrases, min(
max_keywords, 2*no_of_sentences), normalized_levenshtein)
answers = []
for answer in total_phrases_filtered:
if answer not in answers and MCQs_available(answer, s2v):
answers.append(answer)
return answers[:max_keywords]
def generate_questions_mcq(keyword_sent_mapping, device, tokenizer, model, sense2vec, normalized_levenshtein):
batch_text = []
answers = keyword_sent_mapping.keys()
for answer in answers:
txt = keyword_sent_mapping[answer]
context = f"context: {txt}"
text = f"{context} answer: {answer} </s>"
batch_text.append(text)
encoding = tokenizer.batch_encode_plus(
batch_text, pad_to_max_length=True, return_tensors="pt")
print("Running model for generation")
input_ids, attention_masks = encoding["input_ids"].to(
device), encoding["attention_mask"].to(device)
with torch.no_grad():
outs = model.generate(input_ids=input_ids,
attention_mask=attention_masks,
max_length=150)
output_array = {"questions": []}
# print(outs)
for index, val in enumerate(answers):
out = outs[index, :]
dec = tokenizer.decode(out, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
Question = dec.replace("question:", "")
Question = Question.strip()
individual_question = {
"question_statement": Question,
"question_type": "MCQ",
"answer": val,
"id": index + 1,
}
individual_question["options"], individual_question["options_algorithm"] = get_options(
val, sense2vec)
individual_question["options"] = filter_phrases(
individual_question["options"], 10, normalized_levenshtein)
index = 3
individual_question["extra_options"] = individual_question["options"][index:]
individual_question["options"] = individual_question["options"][:index]
individual_question["context"] = keyword_sent_mapping[val]
if len(individual_question["options"]) > 0:
output_array["questions"].append(individual_question)
return output_array
# for normal one word questions
def generate_normal_questions(keyword_sent_mapping, device, tokenizer, model):
batch_text = []
answers = keyword_sent_mapping.keys()
for answer in answers:
txt = keyword_sent_mapping[answer]
context = f"context: {txt}"
text = f"{context} answer: {answer} </s>"
batch_text.append(text)
encoding = tokenizer.batch_encode_plus(
batch_text, pad_to_max_length=True, return_tensors="pt")
print("Running model for generation")
input_ids, attention_masks = encoding["input_ids"].to(
device), encoding["attention_mask"].to(device)
with torch.no_grad():
outs = model.generate(input_ids=input_ids,
attention_mask=attention_masks,
max_length=150)
output_array = {"questions": []}
for index, val in enumerate(answers):
out = outs[index, :]
dec = tokenizer.decode(out, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
Question = dec.replace('question:', '')
Question = Question.strip()
individual_quest = {
'Question': Question,
'Answer': val,
"id": index + 1,
"context": keyword_sent_mapping[val],
}
output_array["questions"].append(individual_quest)
return output_array
def random_choice():
a = random.choice([0, 1])
return bool(a)
nltk.download('brown')
nltk.download('stopwords')
nltk.download('popular')
class QGen:
def __init__(self):
trained_model_path = './model/'
pretrained_model_name = Path(trained_model_path).stem
encoder_path = os.path.join(
trained_model_path, f"{pretrained_model_name}-encoder_quantized.onnx")
decoder_path = os.path.join(
trained_model_path, f"{pretrained_model_name}-decoder_quantized.onnx")
init_decoder_path = os.path.join(
trained_model_path, f"{pretrained_model_name}-init-decoder_quantized.onnx")
model_paths = encoder_path, decoder_path, init_decoder_path
model_sessions = get_onnx_runtime_sessions(model_paths)
model = OnnxT5(trained_model_path, model_sessions)
self.tokenizer = AutoTokenizer.from_pretrained(trained_model_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# model.eval()
self.device = device
self.model = model
self.nlp = spacy.load('en_core_web_sm')
self.s2v = Sense2Vec().from_disk('s2v_old')
self.fdist = FreqDist(brown.words())
self.normalized_levenshtein = NormalizedLevenshtein()
self.set_seed(42)
def set_seed(self, seed):
numpy.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def predict_mcq(self, payload):
start = time.time()
inp = {
"input_text": payload.get("input_text"),
"max_questions": payload.get("max_questions", 4)
}
text = inp['input_text']
sentences = tokenize_sentences(text)
joiner = " "
modified_text = joiner.join(sentences)
keywords = get_keywords(
self.nlp, modified_text, inp['max_questions'], self.s2v, self.fdist, self.normalized_levenshtein, len(sentences))
keyword_sentence_mapping = get_sentences_for_keyword(
keywords, sentences)
for k in keyword_sentence_mapping.keys():
text_snippet = " ".join(keyword_sentence_mapping[k][:3])
keyword_sentence_mapping[k] = text_snippet
final_output = {}
if len(keyword_sentence_mapping.keys()) != 0:
try:
generated_questions = generate_questions_mcq(
keyword_sentence_mapping, self.device, self.tokenizer, self.model, self.s2v, self.normalized_levenshtein)
except Exception:
return final_output
end = time.time()
final_output["statement"] = modified_text
final_output["questions"] = generated_questions["questions"]
final_output["time_taken"] = end-start
if torch.device == 'cuda':
torch.cuda.empty_cache()
return final_output
def predict_shortq(self, payload):
inp = {
"input_text": payload.get("input_text"),
"max_questions": payload.get("max_questions", 4)
}
text = inp['input_text']
sentences = tokenize_sentences(text)
joiner = " "
modified_text = joiner.join(sentences)
keywords = get_keywords(
self.nlp, modified_text, inp['max_questions'], self.s2v, self.fdist, self.normalized_levenshtein, len(sentences))
keyword_sentence_mapping = get_sentences_for_keyword(
keywords, sentences)
for k in keyword_sentence_mapping.keys():
text_snippet = " ".join(keyword_sentence_mapping[k][:3])
keyword_sentence_mapping[k] = text_snippet
final_output = {}
if len(keyword_sentence_mapping.keys()) == 0:
print('ZERO')
return final_output
else:
generated_questions = generate_normal_questions(
keyword_sentence_mapping, self.device, self.tokenizer, self.model)
print(generated_questions)
final_output["statement"] = modified_text
final_output["questions"] = generated_questions["questions"]
if torch.device == 'cuda':
torch.cuda.empty_cache()
return final_output
def paraphrase(self, payload):
start = time.time()
inp = {
"input_text": payload.get("input_text"),
"max_questions": payload.get("max_questions", 3)
}
text = inp['input_text']
num = inp['max_questions']
self.sentence = text
self.text = f"paraphrase: {self.sentence} </s>"
encoding = self.tokenizer.encode_plus(
self.text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to(
self.device), encoding["attention_mask"].to(self.device)
beam_outputs = self.model.generate(
input_ids=input_ids,
attention_mask=attention_masks,
max_length=50,
num_beams=50,
num_return_sequences=num,
no_repeat_ngram_size=2,
early_stopping=True
)
# print ("\nOriginal Question ::")
# print (text)
# print ("\n")
# print ("Paraphrased Questions :: ")
final_outputs = []
for beam_output in beam_outputs:
sent = self.tokenizer.decode(
beam_output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
if sent.lower() != self.sentence.lower() and sent not in final_outputs:
final_outputs.append(sent)
output = {
'Question': text,
'Count': num,
'Paraphrased Questions': final_outputs,
}
for i, final_output in enumerate(final_outputs):
print(f"{i}: {final_output}")
if torch.device == 'cuda':
torch.cuda.empty_cache()
return output
class BoolQGen:
def __init__(self):
self.tokenizer = T5Tokenizer.from_pretrained('t5-base')
model = T5ForConditionalGeneration.from_pretrained(
'ramsrigouthamg/t5_boolean_questions')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# model.eval()
self.device = device
self.model = model
self.set_seed(42)
def set_seed(self, seed):
numpy.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def random_choice(self):
a = random.choice([0, 1])
return bool(a)
def predict_boolq(self, payload):
start = time.time()
inp = {
"input_text": payload.get("input_text"),
"max_questions": payload.get("max_questions", 4)
}
text = inp['input_text']
num = inp['max_questions']
sentences = tokenize_sentences(text)
joiner = " "
modified_text = joiner.join(sentences)
answer = self.random_choice()
form = f"truefalse: {modified_text} passage: {answer} </s>"
encoding = self.tokenizer.encode_plus(form, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to(
self.device), encoding["attention_mask"].to(self.device)
output = beam_search_decoding(
input_ids, attention_masks, self.model, self.tokenizer)
if torch.device == 'cuda':
torch.cuda.empty_cache()
return {'Text': text, 'Count': num, 'Boolean Questions': output}
class AnswerPredictor:
def __init__(self):
self.tokenizer = T5Tokenizer.from_pretrained('t5-base')
model = T5ForConditionalGeneration.from_pretrained('Parth/boolean')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# model.eval()
self.device = device
self.model = model
self.set_seed(42)
def set_seed(self, seed):
numpy.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def greedy_decoding(self, attn_mask, model, tokenizer):
greedy_output = model.generate(
input_ids=self, attention_mask=attn_mask, max_length=256
)
Question = tokenizer.decode(
greedy_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
return Question.strip().capitalize()
def predict_answer(self, payload):
start = time.time()
inp = {
"input_text": payload.get("input_text"),
"input_question": payload.get("input_question")
}
context = inp["input_text"]
question = inp["input_question"]
input_text = f"question: {question} <s> context: {context} </s>"
encoding = self.tokenizer.encode_plus(input_text, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to(
self.device), encoding["attention_mask"].to(self.device)
greedy_output = self.model.generate(
input_ids=input_ids, attention_mask=attention_masks, max_length=256)
Question = self.tokenizer.decode(
greedy_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
return Question.strip().capitalize()
qg = QGen()
# Define the QGen function
def generate_mcq(input_text, max_questions):
payload = {
"input_text": input_text,
"max_questions": max_questions
}
return qg.predict_mcq(payload)
# Create a Gradio interface
iface = gr.Interface(
fn=generate_mcq,
inputs=[
gr.Textbox(label="Input Text"),
gr.Number(label="Max Questions", value=1, maximum=10)
],
outputs=gr.JSON(label="Generated MCQs"),
)
# Launch the Gradio app
iface.launch()