File size: 8,999 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:

import math

import torch
import torch.nn as nn
import torchvision
import numpy as np


class VGG16Extractor(nn.Module):
    def __init__(self, space):
        super().__init__()
        # load pretrained model
        self.vgg_layers = torchvision.models.vgg16(
            weights=torchvision.models.VGG16_Weights.DEFAULT
        ).features

        for param in self.parameters():
            param.requires_grad = False
        self.capture_layers = [1, 3, 6, 8, 11, 13, 15, 22, 29]
        self.space = space

    def forward_base(self, x):
        feat = [x]
        for i in range(len(self.vgg_layers)):
            x = self.vgg_layers[i](x)
            if i in self.capture_layers:
                feat.append(x)
        return feat

    def forward(self, x):
        if self.space != 'vgg':
            x = (x + 1.) / 2.
            x = x - (torch.Tensor([0.485, 0.456, 0.406]).to(x.device).view(1, -1, 1, 1))
            x = x / (torch.Tensor([0.229, 0.224, 0.225]).to(x.device).view(1, -1, 1, 1))
        feat = self.forward_base(x)
        return feat

    def forward_samples_hypercolumn(self, X, samps=100):
        feat = self.forward(X)

        xx, xy = np.meshgrid(np.arange(X.shape[2]), np.arange(X.shape[3]))
        xx = np.expand_dims(xx.flatten(), 1)
        xy = np.expand_dims(xy.flatten(), 1)
        xc = np.concatenate([xx, xy], 1)

        samples = min(samps, xc.shape[0])

        np.random.shuffle(xc)
        xx = xc[:samples, 0]
        yy = xc[:samples, 1]

        feat_samples = []
        for i in range(len(feat)):

            layer_feat = feat[i]

            # hack to detect lower resolution
            if i > 0 and feat[i].size(2) < feat[i - 1].size(2):
                xx = xx / 2.0
                yy = yy / 2.0

            xx = np.clip(xx, 0, layer_feat.shape[2] - 1).astype(np.int32)
            yy = np.clip(yy, 0, layer_feat.shape[3] - 1).astype(np.int32)

            features = layer_feat[:, :, xx[range(samples)], yy[range(samples)]]
            feat_samples.append(features.clone().detach())

        feat = torch.cat(feat_samples, 1)
        return feat


class StyleLoss:

    def spatial_feature_extract(self, feat_result, feat_content, xx, xy):
        l2, l3 = [], []
        device = feat_result[0].device

        # for each extracted layer
        for i in range(len(feat_result)):
            fr = feat_result[i]
            fc = feat_content[i]

            # hack to detect reduced scale
            if i > 0 and feat_result[i - 1].size(2) > feat_result[i].size(2):
                xx = xx / 2.0
                xy = xy / 2.0

            # go back to ints and get residual
            xxm = np.floor(xx).astype(np.float32)
            xxr = xx - xxm

            xym = np.floor(xy).astype(np.float32)
            xyr = xy - xym

            # do bilinear resample
            w00 = torch.from_numpy((1. - xxr) * (1. - xyr)).float().view(1, 1, -1, 1).to(device)
            w01 = torch.from_numpy((1. - xxr) * xyr).float().view(1, 1, -1, 1).to(device)
            w10 = torch.from_numpy(xxr * (1. - xyr)).float().view(1, 1, -1, 1).to(device)
            w11 = torch.from_numpy(xxr * xyr).float().view(1, 1, -1, 1).to(device)

            xxm = np.clip(xxm.astype(np.int32), 0, fr.size(2) - 1)
            xym = np.clip(xym.astype(np.int32), 0, fr.size(3) - 1)

            s00 = xxm * fr.size(3) + xym
            s01 = xxm * fr.size(3) + np.clip(xym + 1, 0, fr.size(3) - 1)
            s10 = np.clip(xxm + 1, 0, fr.size(2) - 1) * fr.size(3) + (xym)
            s11 = np.clip(xxm + 1, 0, fr.size(2) - 1) * fr.size(3) + np.clip(xym + 1, 0, fr.size(3) - 1)

            fr = fr.view(1, fr.size(1), fr.size(2) * fr.size(3), 1)
            fr = fr[:, :, s00, :].mul_(w00).add_(fr[:, :, s01, :].mul_(w01)).add_(fr[:, :, s10, :].mul_(w10)).add_(
                fr[:, :, s11, :].mul_(w11))

            fc = fc.view(1, fc.size(1), fc.size(2) * fc.size(3), 1)
            fc = fc[:, :, s00, :].mul_(w00).add_(fc[:, :, s01, :].mul_(w01)).add_(fc[:, :, s10, :].mul_(w10)).add_(
                fc[:, :, s11, :].mul_(w11))

            l2.append(fr)
            l3.append(fc)

        x_st = torch.cat([li.contiguous() for li in l2], 1)
        c_st = torch.cat([li.contiguous() for li in l3], 1)

        xx = torch.from_numpy(xx).view(1, 1, x_st.size(2), 1).float().to(device)
        yy = torch.from_numpy(xy).view(1, 1, x_st.size(2), 1).float().to(device)

        x_st = torch.cat([x_st, xx, yy], 1)
        c_st = torch.cat([c_st, xx, yy], 1)
        return x_st, c_st

    def rgb_to_yuv(self, rgb):
        C = torch.Tensor(
            [[0.577350, 0.577350, 0.577350], [-0.577350, 0.788675, -0.211325], [-0.577350, -0.211325, 0.788675]]
        ).to(rgb.device)
        yuv = torch.mm(C, rgb)
        return yuv

    def pairwise_distances_cos(self, x, y):
        x_norm = torch.sqrt((x ** 2).sum(1).view(-1, 1))
        y_t = torch.transpose(y, 0, 1)
        y_norm = torch.sqrt((y ** 2).sum(1).view(1, -1))
        dist = 1. - torch.mm(x, y_t) / x_norm / y_norm
        return dist

    def pairwise_distances_sq_l2(self, x, y):
        x_norm = (x ** 2).sum(1).view(-1, 1)
        y_t = torch.transpose(y, 0, 1)
        y_norm = (y ** 2).sum(1).view(1, -1)
        dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t)
        return torch.clamp(dist, 1e-5, 1e5) / x.size(1)

    def distmat(self, x, y, cos_d=True):
        if cos_d:
            M = self.pairwise_distances_cos(x, y)
        else:
            M = torch.sqrt(self.pairwise_distances_sq_l2(x, y))
        return M

    def style_loss(self, X, Y):
        d = X.shape[1]

        if d == 3:
            X = self.rgb_to_yuv(X.transpose(0, 1).contiguous().view(d, -1)).transpose(0, 1)
            Y = self.rgb_to_yuv(Y.transpose(0, 1).contiguous().view(d, -1)).transpose(0, 1)
        else:
            X = X.transpose(0, 1).contiguous().view(d, -1).transpose(0, 1)
            Y = Y.transpose(0, 1).contiguous().view(d, -1).transpose(0, 1)

        # Relaxed EMD
        CX_M = self.distmat(X, Y, cos_d=True)

        if d == 3:
            CX_M = CX_M + self.distmat(X, Y, cos_d=False)

        m1, m1_inds = CX_M.min(1)
        m2, m2_inds = CX_M.min(0)

        remd = torch.max(m1.mean(), m2.mean())

        return remd

    def moment_loss(self, X, Y, moments=[1, 2]):
        loss = 0.
        X = X.squeeze().t()
        Y = Y.squeeze().t()

        mu_x = torch.mean(X, 0, keepdim=True)
        mu_y = torch.mean(Y, 0, keepdim=True)
        mu_d = torch.abs(mu_x - mu_y).mean()

        if 1 in moments:
            loss = loss + mu_d

        if 2 in moments:
            X_c = X - mu_x
            Y_c = Y - mu_y
            X_cov = torch.mm(X_c.t(), X_c) / (X.shape[0] - 1)
            Y_cov = torch.mm(Y_c.t(), Y_c) / (Y.shape[0] - 1)

            D_cov = torch.abs(X_cov - Y_cov).mean()
            loss = loss + D_cov

        return loss

    def forward(self, feat_result, feat_content, feat_style, indices, content_weight, moment_weight=1.0):
        # spatial feature extract
        num_locations = 1024
        spatial_result, spatial_content = self.spatial_feature_extract(
            feat_result, feat_content, indices[0][:num_locations], indices[1][:num_locations]
        )

        # loss_content = content_loss(spatial_result, spatial_content)

        d = feat_style.shape[1]
        spatial_style = feat_style.view(1, d, -1, 1)
        feat_max = 3 + 2 * 64 + 128 * 2 + 256 * 3 + 512 * 2  # (sum of all extracted channels)

        loss_remd = self.style_loss(spatial_result[:, :feat_max, :, :], spatial_style[:, :feat_max, :, :])

        loss_moment = self.moment_loss(spatial_result[:, :-2, :, :],
                                       spatial_style,
                                       moments=[1, 2])  # -2 is so that it can fit?
        # palette matching
        content_weight_frac = 1. / max(content_weight, 1.)
        loss_moment += content_weight_frac * self.style_loss(spatial_result[:, :3, :, :], spatial_style[:, :3, :, :])

        loss_style = loss_remd + moment_weight * loss_moment
        # print(f'Style: {loss_style.item():.3f}, Content: {loss_content.item():.3f}')

        style_weight = 1.0 + moment_weight
        loss_total = (loss_style) / (content_weight + style_weight)
        return loss_total


def sample_indices(feat_content, feat_style):
    const = 128 ** 2  # 32k or so
    big_size = feat_content.shape[2] * feat_content.shape[3]  # num feaxels

    stride_x = int(max(math.floor(math.sqrt(big_size // const)), 1))
    offset_x = np.random.randint(stride_x)
    stride_y = int(max(math.ceil(math.sqrt(big_size // const)), 1))
    offset_y = np.random.randint(stride_y)
    xx, xy = np.meshgrid(
        np.arange(feat_content.shape[2])[offset_x::stride_x],
        np.arange(feat_content.shape[3])[offset_y::stride_y]
    )
    xx = xx.flatten()
    xy = xy.flatten()
    return xx, xy