File size: 13,175 Bytes
34a9259
afd2199
 
34a9259
22e7a27
91f9212
59f93ed
22e7a27
34a9259
afd2199
4ce546f
 
34a9259
 
 
 
 
 
 
cd41c0c
a21de06
afd2199
7ca00ed
fc47c19
 
 
 
 
 
b75d5b3
 
e2522a6
0e929df
3bbef49
0e929df
7d480ef
 
f5eb0df
8db8164
 
b8eab7d
 
 
 
 
 
6c321f9
3bc0fc7
 
b8eab7d
 
 
 
 
 
 
 
22e7a27
551301a
f5eb0df
 
22e7a27
 
 
 
 
 
22e21ad
3e81a23
22e7a27
c76c2fc
3bbef49
551301a
7c1031f
91f9212
 
 
3bbef49
91f9212
 
5a730a3
08d7883
8ce2567
91f9212
 
 
 
 
 
 
 
 
 
 
6c321f9
 
b6358bf
91f9212
6c321f9
91f9212
 
 
 
 
 
 
 
3bbef49
21e50d2
b8eab7d
f5eb0df
c186703
 
 
3bbef49
21e50d2
 
3bbef49
 
21e50d2
38ea66b
 
fc47c19
d8c9e2f
fc47c19
 
91f9212
c186703
41707d0
21e50d2
1581cde
ecc17fe
 
c186703
91f9212
92499cd
b8eab7d
21e50d2
 
b8eab7d
f5eb0df
4ce546f
c186703
3bbef49
21e50d2
 
3bbef49
aa67e27
21e50d2
4ce546f
38ea66b
 
4ce546f
b8eab7d
a4769fb
21e50d2
4ce546f
3bbef49
fc40636
3bbef49
21e50d2
 
a4769fb
ca4884f
bbdb0f2
3bbef49
92499cd
b8eab7d
 
f5eb0df
 
c227693
c186703
3bbef49
21e50d2
 
435673b
3bbef49
21e50d2
582b742
38ea66b
 
3bbef49
b8eab7d
22e21ad
0c80e1d
c186703
 
21e50d2
c186703
 
92499cd
7652cc1
 
 
 
 
 
 
 
 
 
a4769fb
 
 
 
 
7652cc1
 
 
 
 
 
1581cde
bbdb0f2
905005a
7652cc1
 
 
 
 
 
 
a4769fb
 
 
 
 
7652cc1
 
 
 
 
 
 
 
 
 
 
 
b3bc76f
7652cc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c9e2f
7652cc1
 
 
 
 
 
d8c9e2f
d151311
 
b8eab7d
a4769fb
7652cc1
d151311
 
 
7652cc1
 
d151311
 
b8eab7d
7652cc1
 
d151311
 
 
7652cc1
 
d151311
905005a
 
 
 
 
d151311
905005a
 
 
 
d151311
905005a
 
 
 
d151311
905005a
 
 
 
97f0668
879a6e4
 
897d384
 
 
 
7688405
7652cc1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Pose inferencing
import mmpose
from mmpose.apis import MMPoseInferencer

# Ultralytics
from ultralytics import YOLO
import torch

# Gradio
import gradio as gr
import moviepy.editor as moviepy


# System and files
import os
import glob
import uuid

# Image manipulation
import numpy as np
import cv2

print(torch.__version__)
# Use GPU if available
if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

os.system("nvidia-smi")

print("[INFO]: Imported modules!")
human = MMPoseInferencer("human")
hand = MMPoseInferencer("hand")
human3d = MMPoseInferencer(pose3d="human3d")
track_model = YOLO('yolov8n.pt')  # Load an official Detect model


print("[INFO]: Downloaded models!")

def check_extension(video):
    split_tup = os.path.splitext(video)

    # extract the file name and extension
    file_name = split_tup[0]
    file_extension = split_tup[1]

    if file_extension != ".mp4":
        print("Converting to mp4")
        clip = moviepy.VideoFileClip(video)

        video = file_name+".mp4"
        clip.write_videofile(video)
    
    return video


def tracking(video, model, boxes=True):
    print("[INFO] Is cuda available? ", torch.cuda.is_available())
    print(device)

    print("[INFO] Loading model...")
    # Load an official or custom model

    # Perform tracking with the model
    print("[INFO] Starting tracking!")
    # https://docs.ultralytics.com/modes/predict/
    annotated_frame = model(video, boxes=boxes, device=device)

    return annotated_frame

def show_tracking(video_content):

        # https://docs.ultralytics.com/datasets/detect/coco/
        video = cv2.VideoCapture(video_content)

        # Track
        video_track = tracking(video_content, track_model.track)

        # Prepare to save video
        #out_file = os.path.join(vis_out_dir, "track.mp4")
        out_file = "track.mp4"
        print("[INFO]: TRACK", out_file)

        fourcc = cv2.VideoWriter_fourcc(*"mp4v")  # Codec for MP4 video
        fps = video.get(cv2.CAP_PROP_FPS)
        height, width, _ = video_track[0][0].orig_img.shape
        size = (width,height)

        out_track = cv2.VideoWriter(out_file, fourcc, fps, size)

        # Go through frames and write them 
        for frame_track in video_track:
            result_track = frame_track[0].plot()  # plot a BGR numpy array of predictions
            out_track.write(result_track)

        print("[INFO] Done with frames")
        #print(type(result_pose)) numpy ndarray
    
        out_track.release()

        video.release()
        cv2.destroyAllWindows() # Closing window

        return out_file


def pose3d(video):
    
    video = check_extension(video)
    print(device)


    # Define new unique folder
    add_dir = str(uuid.uuid4())
    #vis_out_dir = os.path.join("/".join(video.split("/")[:-1]), add_dir)
    os.makedirs(add_dir)

    result_generator = human3d(video, 
                                vis_out_dir = add_dir,
                                thickness=4,
                                radius = 5,
                                return_vis=True,
                                kpt_thr=0.3,
                                rebase_keypoint_height=True,
                                device=device)    
    
    result = [result for result in result_generator] #next(result_generator)        

    out_file = glob.glob(os.path.join(add_dir, "*.mp4")) #+ glob.glob(os.path.join(vis_out_dir, "*.webm")) 
    
    # Reinitialize
    human3d().init()
    return "".join(out_file)


def pose2d(video, kpt_threshold):
    human = MMPoseInferencer("human")

    video = check_extension(video)
    print(device)

    # Define new unique folder
    add_dir = str(uuid.uuid4())
    #vis_out_dir = os.path.join("/".join(video.split("/")[:-1]), add_dir)
    os.makedirs(add_dir)

    result_generator = human(video, 
                            vis_out_dir = add_dir,
                            return_vis=True,
                            radius = 5,
                            thickness=4,
                            rebase_keypoint_height=True,
                            kpt_thr=kpt_threshold,
                            device=device,
                            pred_out_dir = add_dir
                            )    
    
    result = [result for result in result_generator] #next(result_generator)        

    out_file = glob.glob(os.path.join(add_dir, "*.mp4")) #+ glob.glob(os.path.join(vis_out_dir, "*.webm")) 
    kpoints = glob.glob(os.path.join(add_dir, "*.json"))


    return "".join(out_file), "".join(kpoints)


def pose2dhand(video, kpt_threshold):
    video = check_extension(video)
    print(device)
    # ultraltics

    # Define new unique folder
    add_dir = str(uuid.uuid4())
    #vis_out_dir = os.path.join("/".join(video.split("/")[:-1]), add_dir)
    os.makedirs(add_dir)

    result_generator = hand(video, 
                                 vis_out_dir = add_dir,
                                 return_vis=True,
                                 thickness = 4,
                                 radius = 5,
                                 rebase_keypoint_height=True,
                                 kpt_thr=kpt_threshold,
                                 device=device)    
    
    result = [result for result in result_generator] #next(result_generator)        

    out_file = glob.glob(os.path.join(add_dir, "*.mp4")) #+ glob.glob(os.path.join(vis_out_dir, "*.webm")) 
   
    return "".join(out_file)

block = gr.Blocks()
with block:
    with gr.Column():       
        with gr.Tab("Upload video"):
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        video_input = gr.Video(source="upload", type="filepath", height=612)
                        # Insert slider with kpt_thr
                        file_kpthr = gr.Slider(0, 1, value=0.3, label='Keypoint threshold')
                        with gr.Row():
                            submit_pose_file = gr.Button("Make 2d pose estimation", variant="primary")
                            submit_pose3d_file = gr.Button("Make 3d pose estimation", variant="primary")
                            submit_hand_file = gr.Button("Make 2d hand estimation", variant="primary")
                            submit_detect_file = gr.Button("Detect and track objects", variant="primary")

                with gr.Row():
                    video_output1 = gr.PlayableVideo(height=512,  label = "Estimate human 2d poses", show_label=True)
                    video_output2 = gr.PlayableVideo(height=512,  label = "Estimate human 3d poses", show_label=True)
                    video_output3 = gr.PlayableVideo(height=512,  label = "Estimate human hand poses", show_label=True)
                    video_output4 = gr.Video(height=512, label = "Detection and tracking", show_label=True, format="mp4")
                jsonoutput = gr.Code()

        with gr.Tab("Record video with webcam"):
            
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        webcam_input = gr.Video(source="webcam", height=612)
                        
                        web_kpthr = gr.Slider(0, 1, value=0.3, label='Keypoint threshold')
                        with gr.Row():
                            submit_pose_web = gr.Button("Make 2d pose estimation", variant="primary")
                            submit_pose3d_web = gr.Button("Make 3d pose estimation", variant="primary")
                            submit_hand_web = gr.Button("Make 2d hand estimation", variant="primary")
                            submit_detect_web = gr.Button("Detect and track objects", variant="primary")
                with gr.Row():
                    webcam_output1 = gr.PlayableVideo(height=716,  label = "Estimate human 2d poses", show_label=True)
                    webcam_output2 = gr.PlayableVideo(height=716,  label = "Estimate human 3d poses", show_label=True)
                    webcam_output3 = gr.PlayableVideo(height=716,  label = "Estimate human hand position", show_label=True)
                    webcam_output4 = gr.Video(height=716, label = "Detection and tracking", show_label=True, format="mp4")

        with gr.Tab("General information"):
            gr.Markdown(""" 
                        \n # Information about the models 

                        \n ## Pose models: 
                        
                        \n All the pose estimation models come from the library [MMpose](https://github.com/open-mmlab/mmpose). It is a library for human pose estimation that provides pre-trained models for 2D and 3D pose estimation. 

                        \n The 2D pose model is used for estimating the 2D coordinates of human body joints from an image or a video frame. The model uses a convolutional neural network (CNN) to predict the joint locations and their confidence scores. 
                        
                        \n The 2D hand model is a specialized version of the 2D pose model that is designed for hand pose estimation. It uses a similar CNN architecture to the 2D pose model but is trained specifically for detecting the joints in the hand. 
                        
                        \n The 3D pose model is used for estimating the 3D coordinates of human body joints from an image or a video frame. The model uses a combination of 2D pose estimation and depth estimation to infer the 3D joint locations. 
                        
                        \n 

                        \n ## Detection and tracking:                            
                        
                        \n The tracking method in the Ultralight's YOLOv8 model is used for object tracking in videos. It takes a video file or a camera stream as input and returns the tracked objects in each frame. The method uses the COCO dataset classes for object detection and tracking. 
                        
                        \n The COCO dataset contains 80 classes of objects such as person, car, bicycle, etc. See https://docs.ultralytics.com/datasets/detect/coco/ for all available classes. The tracking method uses the COCO classes to detect and track the objects in the video frames. The tracked objects are represented as bounding boxes with labels indicating the class of the object.""")
            gr.Markdown("You can load the keypoints in python in the following way: ")
            gr.Code(
                    value="""def hello_world():
                                    return "Hello, world!"
                
                            print(hello_world())""",
                    language="python",
                    interactive=True,
                    show_label=False,
                )
            

        # From file
        submit_pose_file.click(fn=pose2d, 
                            inputs=  [video_input, file_kpthr], 
                            outputs = [video_output1, jsonoutput],
                            queue=False)
        
        submit_pose3d_file.click(fn=pose3d, 
                                inputs= video_input, 
                                outputs = video_output2,
                                queue=False)
        
        submit_hand_file.click(fn=pose2dhand, 
                            inputs= [video_input, file_kpthr], 
                            outputs = video_output3,
                            queue=False)
        
        submit_detect_file.click(fn=show_tracking, 
                                inputs= video_input, 
                                outputs = video_output4,
                                queue=False)
        
        # Web
        submit_pose_web.click(fn=pose2d, 
                            inputs = [webcam_input, web_kpthr], 
                            outputs = webcam_output1,
                            queue=False)
        
        submit_pose3d_web.click(fn=pose3d, 
                                inputs= webcam_input, 
                                outputs = webcam_output2,
                                queue=False)
        
        submit_hand_web.click(fn=pose2dhand, 
                            inputs= [webcam_input, web_kpthr], 
                            outputs = webcam_output3,
                            queue=False)
        
        submit_detect_web.click(fn=show_tracking, 
                                inputs= webcam_input, 
                                outputs = webcam_output4,
                                queue=False)


if __name__ == "__main__":
    block.queue(concurrency_count=5, # When you increase the concurrency_count parameter in queue(), max_threads() in launch() is automatically increased as well.
                max_size=25, # Maximum number of requests that the queue processes
                api_open = False # When creating a Gradio demo, you may want to restrict all traffic to happen through the user interface as opposed to the programmatic API that is automatically created for your Gradio demo.  
                    )  # https://www.gradio.app/guides/setting-up-a-demo-for-maximum-performance
    block.launch()