# adapted from https://github.com/facebookresearch/barlowtwins from math import exp import torch import torch.nn.functional as F from torch.autograd import Variable class RedundancyReduction(torch.nn.Module): def __init__(self, lambd=1e-5, vector_dimensions=256): super().__init__() self.lambd = lambd self.bn = torch.nn.BatchNorm1d(vector_dimensions, affine=False) def forward(self, z1, z2): c = self.bn(z1).T @ self.bn(z2) c.div_(z1.size(0)) off_diag = off_diagonal(c).pow_(2).sum() return self.lambd * off_diag class BarlowTwinsLoss(torch.nn.Module): def __init__(self, lambd=1e-5, vector_dimensions=256): super().__init__() self.lambd = lambd self.bn = torch.nn.BatchNorm1d(vector_dimensions, affine=False) def forward(self, z1, z2): c = self.bn(z1).T @ self.bn(z2) c.div_(z1.size(0)) on_diag = torch.diagonal(c).add_(-1).pow_(2).sum() off_diag = off_diagonal(c).pow_(2).sum() loss = on_diag + self.lambd * off_diag return loss def off_diagonal(x): # return a flattened view of the off-diagonal elements of a square matrix n, m = x.shape assert n == m return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten() class TripletLoss(torch.nn.Module): def __init__(self, margin): super().__init__() self.cosine_similarity = torch.nn.CosineSimilarity() self.margin = margin def forward(self, anchor_embeddings, positive_embeddings, negative_embeddings): positive_distance = 1 - self.cosine_similarity(anchor_embeddings, positive_embeddings) negative_distance = 1 - self.cosine_similarity(anchor_embeddings, negative_embeddings) losses = torch.max(positive_distance - negative_distance + self.margin, torch.full_like(positive_distance, 0)) return torch.mean(losses) # The following is taken from https://github.com/NATSpeech/NATSpeech/blob/aef3aa8899c82e40a28e4f59d559b46b18ba87e8/utils/metrics/ssim.py def gaussian(window_size, sigma): gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) return gauss / gauss.sum() def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) return window def _ssim(img1, img2, window, window_size, channel, size_average=True): mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 C1 = 0.01 ** 2 C2 = 0.03 ** 2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() else: return ssim_map.mean(1) class SSIM(torch.nn.Module): """ Adapted from https://github.com/Po-Hsun-Su/pytorch-ssim """ def __init__(self, window_size=11, size_average=True): super(SSIM, self).__init__() self.window_size = window_size self.size_average = size_average self.channel = 1 self.window = create_window(window_size, self.channel) def forward(self, img1, img2): (_, channel, _, _) = img1.size() if channel == self.channel and self.window.data.type() == img1.data.type(): window = self.window else: window = create_window(self.window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) self.window = window self.channel = channel return _ssim(img1, img2, window, self.window_size, channel, self.size_average) window = None def ssim(img1, img2, window_size=11, size_average=True): (_, channel, _, _) = img1.size() global window if window is None: window = create_window(window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) return _ssim(img1, img2, window, window_size, channel, size_average)