File size: 21,115 Bytes
0d23076
b0abe15
9a7561b
dc92a64
b0abe15
dc92a64
 
9e0ff12
ed63e69
b0abe15
43d5145
b0abe15
 
 
de93a91
 
 
 
d0c2cdc
8077ebf
dc92a64
8077ebf
9e0ff12
43d5145
9e0ff12
8077ebf
9e0ff12
 
0d23076
43d5145
 
 
8077ebf
 
 
 
dc92a64
8077ebf
 
 
 
 
 
9a7561b
8077ebf
 
 
 
 
9a7561b
8077ebf
 
dc92a64
9a7561b
b0abe15
de93a91
8077ebf
 
 
ed63e69
8077ebf
 
de93a91
 
8077ebf
 
9a7561b
8077ebf
dc92a64
 
 
 
 
 
 
de93a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc92a64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de93a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc92a64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffc18a3
 
61357d4
 
ffc18a3
61357d4
 
 
 
dc92a64
fe93989
 
61357d4
 
 
 
 
ffc18a3
9a7561b
61357d4
fe93989
5db0d3c
 
 
fe93989
61357d4
5db0d3c
9a7561b
5db0d3c
 
dc92a64
 
5db0d3c
 
 
 
 
 
 
 
 
61357d4
9a7561b
5db0d3c
8077ebf
dc92a64
5db0d3c
 
8077ebf
dc92a64
5db0d3c
 
8077ebf
dc92a64
61357d4
8077ebf
 
 
dc92a64
 
de93a91
61357d4
fe93989
61357d4
fe93989
61357d4
9a7561b
61357d4
fe93989
b3206d8
5db0d3c
 
b3206d8
61357d4
9a7561b
d0c2cdc
 
8077ebf
dc92a64
 
5db0d3c
 
8077ebf
 
 
5db0d3c
d0c2cdc
 
 
 
 
8077ebf
 
 
d0c2cdc
 
5db0d3c
 
 
9a7561b
5db0d3c
8077ebf
dc92a64
61357d4
5db0d3c
8077ebf
dc92a64
5db0d3c
 
8077ebf
dc92a64
8077ebf
 
 
 
dc92a64
 
 
 
61357d4
fe93989
61357d4
 
 
9a7561b
61357d4
fe93989
5db0d3c
b3206d8
5db0d3c
fe93989
61357d4
9a7561b
d0c2cdc
 
8077ebf
dc92a64
 
5db0d3c
 
8077ebf
 
 
5db0d3c
d0c2cdc
 
 
 
 
8077ebf
 
 
d0c2cdc
 
5db0d3c
 
61357d4
9a7561b
5db0d3c
8077ebf
dc92a64
5db0d3c
 
fe93989
dc92a64
5db0d3c
 
8077ebf
dc92a64
8077ebf
 
 
 
dc92a64
de93a91
 
61357d4
9a7561b
61357d4
 
0d23076
 
9e0ff12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModel
from peft.auto import AutoPeftModelForSequenceClassification
from tensorboard.backend.event_processing import event_accumulator
from peft import PeftModel
import plotly.express as px
import pandas as pd

tokenizer1 = AutoTokenizer.from_pretrained("albert-base-v2")

loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

tokenizer2 = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall")
# base_model = AutoModel.from_pretrained("microsoft/deberta-v3-xsmall")
# peft_model_id = "rajevan123/STS-Lora-Fine-Tuning-Capstone-Deberta-small"
# model = PeftModel.from_pretrained(base_model, peft_model_id)
# #merged_model = model.merge_and_unload()


# Handle calls to DistilBERT------------------------------------------
distilBERTUntrained_pipe = pipeline("sentiment-analysis", model="bert-base-uncased")
distilBERTnoLORA_pipe = pipeline(model="Intradiction/text_classification_NoLORA")
distilBERTwithLORA_pipe = pipeline("sentiment-analysis", model=loraModel, tokenizer=tokenizer)

#text class models 
def distilBERTnoLORA_fn(text):
    return distilBERTnoLORA_pipe(text)

def distilBERTwithLORA_fn(text):
    return distilBERTwithLORA_pipe(text)

def distilBERTUntrained_fn(text):
    return distilBERTUntrained_pipe(text)


# Handle calls to ALBERT---------------------------------------------
ALbertUntrained_pipe = pipeline("text-classification", model="albert-base-v2")
AlbertnoLORA_pipe = pipeline(model="Intradiction/NLI-Conventional-Fine-Tuning")
#AlbertwithLORA_pipe = pipeline()

#NLI models 
def AlbertnoLORA_fn(text1, text2):
    return AlbertnoLORA_pipe({'text': text1, 'text_pair': text2})

def AlbertwithLORA_fn(text1, text2):
    return ("working2")

def AlbertUntrained_fn(text1, text2):
    return ALbertUntrained_pipe({'text': text1, 'text_pair': text2})


# Handle calls to Deberta--------------------------------------------
DebertaUntrained_pipe = pipeline("text-classification", model="microsoft/deberta-v3-xsmall")
DebertanoLORA_pipe = pipeline("text-classification", model="rajevan123/STS-Conventional-Fine-Tuning")
#DebertawithLORA_pipe = pipeline("text-classification",model=model, tokenizer=tokenizer2)

#STS models
def DebertanoLORA_fn(text1, text2):
    return DebertanoLORA_pipe({'text': text1, 'text_pair': text2})

def DebertawithLORA_fn(text1, text2):
    #return DebertawithLORA_pipe({'text': text1, 'text_pair': text2})
    return ("working2")

def DebertaUntrained_fn(text1, text2):
    return DebertaUntrained_pipe({'text': text1, 'text_pair': text2})

#helper functions ------------------------------------------------------

#Text metrics for Untrained models
def displayMetricStatsUntrained():
    return "No statistics to display for untrained models"

def displayMetricStatsText():
    file_name = 'events.out.tfevents.distilbertSA-conventional.0'
    event_acc = event_accumulator.EventAccumulator(file_name,
    size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
    event_acc.Reload()
    accuracy_data = event_acc.Scalars('eval/accuracy')
    loss_data = event_acc.Scalars('eval/loss')
    metrics = ''
    for i in range(0, len(loss_data)):
        metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
        metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
        metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
    
    return metrics

def displayMetricStatsTextTCLora():
    file_name = 'events.out.tfevents.distilbertSA-LORA.0'
    event_acc = event_accumulator.EventAccumulator(file_name,
    size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
    event_acc.Reload()
    accuracy_data = event_acc.Scalars('eval/accuracy')
    loss_data = event_acc.Scalars('eval/loss')
    metrics = ''
    for i in range(0, len(loss_data)):
        metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
        metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
        metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
    
    return metrics

def displayMetricStatsTextNLINoLora():
    file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
    event_acc = event_accumulator.EventAccumulator(file_name,
    size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
    event_acc.Reload()
    accuracy_data = event_acc.Scalars('eval/accuracy')
    loss_data = event_acc.Scalars('eval/loss')
    metrics = ''
    for i in range(0, len(loss_data)):
        metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
        metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
        metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
    
    return metrics

def displayMetricStatsTextNLILora():
    file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
    event_acc = event_accumulator.EventAccumulator(file_name,
    size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
    event_acc.Reload()
    accuracy_data = event_acc.Scalars('eval/accuracy')
    loss_data = event_acc.Scalars('eval/loss')
    metrics = ''
    for i in range(0, len(loss_data)):
        metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
        metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
        metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
    
    return metrics

def displayMetricStatsTextSTSLora():
    file_name = 'events.out.tfevents.STS-Lora.2'
    event_acc = event_accumulator.EventAccumulator(file_name,
    size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
    event_acc.Reload()
    accuracy_data = event_acc.Scalars('eval/accuracy')
    loss_data = event_acc.Scalars('eval/loss')
    metrics = ''
    for i in range(0, len(loss_data)):
        metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
        metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
        metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
    
    return metrics
def displayMetricStatsTextSTSNoLora():
    file_name = 'events.out.tfevents.STS-Conventional.0'
    event_acc = event_accumulator.EventAccumulator(file_name,
    size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
    event_acc.Reload()
    accuracy_data = event_acc.Scalars('eval/accuracy')
    loss_data = event_acc.Scalars('eval/loss')
    metrics = ''
    for i in range(0, len(loss_data)):
        metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
        metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
        metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
    
    return metrics

def displayMetricStatsGraph():
   file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
   event_acc = event_accumulator.EventAccumulator(file_name,
   size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
   event_acc.Reload()
   accuracy_data = event_acc.Scalars('eval/accuracy')
   loss_data = event_acc.Scalars("eval/loss")
   epoch = []
   metric = []
   group = []
   for i in range(0, len(accuracy_data)):
       epoch.append(str(i))
       metric.append(accuracy_data[i].value)
       group.append('G1')
   for j in range(0, len(loss_data)):
       epoch.append(str(j))
       metric.append(loss_data[j].value)
       group.append('G2')
   data = pd.DataFrame()
   data['Epoch'] = epoch
   data['Metric'] = metric
   data['Group'] = group

  #generate the actual plot
   return px.line(data, x = 'Epoch', y = 'Metric', color=group, markers = True)


# #placeholder
# def chat1(message,history):
#     history = history or []
#     message = message.lower()
#     if message.startswith("how many"):
#         response = ("1 to 10")
#     else:
#         response = ("whatever man whatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever man")

#     history.append((message, response))
#     return history, history


with gr.Blocks(
    title="",

) as demo:
    gr.Markdown("""
        <div style="overflow: hidden;color:#fff;display: flex;flex-direction: column;align-items: center; position: relative; width: 100%; height: 180px;background-size: cover; background-image: url(https://www.grssigns.co.uk/wp-content/uploads/web-Header-Background.jpg);">
            <img style="width: 130px;height: 60px;position: absolute;top:10px;left:10px" src="https://www.torontomu.ca/content/dam/tmumobile/images/TMU-Mobile-AppIcon.png"/>
            <span style="margin-top: 40px;font-size: 36px ;font-family:fantasy;">Efficient Fine Tuning Of Large Language Models</span>
            <span style="margin-top: 10px;font-size: 14px;">By: Rahul Adams, Greylyn Gao, Rajevan Logarajah & Mahir Faisal</span>
            <span style="margin-top: 5px;font-size: 14px;">Group Id: AR06 FLC: Alice Reuda</span>
        </div>
    """)
    with gr.Tab("Text Classification"):
        with gr.Row():
            gr.Markdown("<h1>Efficient Fine Tuning for Text Classification</h1>")
        with gr.Row():
            with gr.Column(variant="panel"):
                gr.Markdown("""
                            <h2>Specifications</h2>
                            <p><b>Model:</b> Tiny Bert <br>
                            <b>Dataset:</b> IMDB Movie review dataset <br>
                            <b>NLP Task:</b> Text Classification</p>
                            <p>Text classification is an NLP task that focuses on automatically ascribing a predefined category or labels to an input prompt. In this demonstration the Tiny Bert model has been used to classify the text on the basis of sentiment analysis, where the labels (negative and positive) will indicate the emotional state expressed by the input prompt. The tiny bert model was chosen as in its base state its ability to perform sentiment analysis is quite poor, displayed by the untrained model, which often fails to correctly ascribe the label to the sentiment. The models were trained on the IMDB dataset which includes over 100k sentiment pairs pulled from IMDB movie reviews. We can see that when training is performed over [XX] of epochs we see an increase in X% of training time for the LoRA trained model.</p>
                            """)
                
            with gr.Column(variant="panel"):
                inp = gr.Textbox(placeholder="Prompt",label= "Enter Query")
                btn = gr.Button("Run")
                btnTextClassStats = gr.Button("Display Training Metrics")
                btnTensorLink = gr.Button(value="View Tensorboard Graphs", link="https://huggingface.co/Intradiction/text_classification_NoLORA/tensorboard")
                gr.Examples(
                    [
                        "I thought this was a bit contrived",
                        "You would need to be a child to enjoy this",
                        "Drive more like Drive away",
                    ],
                    inp,
                    label="Try asking",
                )

            with gr.Column(scale=3):
                with gr.Row(variant="panel"):
                    TextClassOut =  gr.Textbox(label= "Untrained Base Model")
                    TextClassUntrained = gr.Textbox(label = "Training Informaiton")

                with gr.Row(variant="panel"):
                    TextClassOut1 = gr.Textbox(label= "Conventionaly Trained Model")
                    TextClassNoLoraStats = gr.Textbox(label = "Training Informaiton")

                with gr.Row(variant="panel"):
                    TextClassOut2 = gr.Textbox(label= "LoRA Fine Tuned Model")
                    TextClassLoraStats = gr.Textbox(label = "Training Informaiton")

        btn.click(fn=distilBERTUntrained_fn, inputs=inp, outputs=TextClassOut)
        btn.click(fn=distilBERTnoLORA_fn, inputs=inp, outputs=TextClassOut1)
        btn.click(fn=distilBERTwithLORA_fn, inputs=inp, outputs=TextClassOut2)
        btnTextClassStats.click(fn=displayMetricStatsUntrained, outputs=TextClassUntrained)
        btnTextClassStats.click(fn=displayMetricStatsText, outputs=TextClassNoLoraStats)
        btnTextClassStats.click(fn=displayMetricStatsTextTCLora, outputs=TextClassLoraStats) #to be changed

    with gr.Tab("Natural Language Inferencing"):
         with gr.Row():
             gr.Markdown("<h1>Efficient Fine Tuning for Natural Language Inferencing</h1>")
         with gr.Row():
            with gr.Column(variant="panel"):
                gr.Markdown("""
                            <h2>Specifications</h2>
                            <p><b>Model:</b> Albert <br>
                            <b>Dataset:</b> Stanford Natural Language Inference Dataset <br>
                            <b>NLP Task:</b> Natual Languae Infrencing</p>
                            <p>Natural Language Inference (NLI) which can also be referred to as Textual Entailment is an NLP task with the objective of determining the relationship between two pieces of text. In this demonstration the Albert model has been used to determine textual similarity ascribing a correlation score by the comparison of the two input prompts to determine if. Albert was chosen due to its substandard level of performance in its base state allowing room for improvement during training. The models were trained on the Stanford Natural Language Inference Dataset is a collection of 570k human-written English sentence pairs manually labeled for balanced classification, listed as positive, negative or neutral. We can see that when training is performed over [XX] epochs we see an increase in X% of training time for the LoRA trained model compared to a conventionally tuned model. </p>
                            """)
            with gr.Column(variant="panel"):
                nli_p1 = gr.Textbox(placeholder="Prompt One",label= "Enter Query")
                nli_p2 = gr.Textbox(placeholder="Prompt Two",label= "Enter Query")
                nli_btn = gr.Button("Run")
                btnNLIStats = gr.Button("Display Training Metrics")
                btnTensorLink1 = gr.Button(value="View Tensorboard Graphs", link="https://huggingface.co/Intradiction/text_classification_NoLORA/tensorboard") #to be changed
                gr.Examples(
                    [
                        "I am with my friends",
                        "People like apples",
                        "Dogs like bones",
                    ],
                    nli_p1,
                    label="Try asking",
                ) 
                gr.Examples(
                    [
                        "I am happy",
                        "Apples are good",
                        "Bones like dogs",
                    ],
                    nli_p2,
                    label="Try asking",
                ) 

            with gr.Column(scale=3):
                with gr.Row(variant="panel"):
                    NLIOut =  gr.Textbox(label= "Untrained Base Model")
                    NLIUntrained = gr.Textbox(label = "Training Informaiton")

                with gr.Row(variant="panel"):
                    NLIOut1 = gr.Textbox(label= "Conventionaly Trained Model")
                    NLINoLoraStats = gr.Textbox(label = "Training Informaiton")

                with gr.Row(variant="panel"):
                    NLIOut2 = gr.Textbox(label= "LoRA Fine Tuned Model")
                    NLILoraStats = gr.Textbox(label = "Training Informaiton")
        
         nli_btn.click(fn=AlbertUntrained_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut)
         nli_btn.click(fn=AlbertnoLORA_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut1)
         nli_btn.click(fn=AlbertwithLORA_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut2)
         btnNLIStats.click(fn=displayMetricStatsUntrained, outputs=NLIUntrained)
        #btnNLIStats.click(fn=displayMetricStatsUntrained, outputs=NLINoLoraStats)
        #btnNLIStats.click(fn=displayMetricStatsUntrained, outputs=NLILoraStats)
         

    with gr.Tab("Semantic Text Similarity"):
         with gr.Row():
             gr.Markdown("<h1>Efficient Fine Tuning for Semantic Text Similarity</h1>")
         with gr.Row():
            with gr.Column(variant="panel"):
                gr.Markdown("""
                            <h2>Specifications</h2>
                            <p><b>Model:</b> DeBERTa-v3-xsmall <br>
                            <b>Dataset:</b> Semantic Text Similarity Benchmark <br>
                            <b>NLP Task:</b> Semantic Text Similarity</p>
                            <p>Semantic text similarity measures the closeness in meaning of two pieces of text despite differences in their wording or structure. This task involves two input prompts which can be sentences, phrases or entire documents and assessing them for similarity. In our implementation we compare phrases represented by a score that can range between zero and one. A score of zero implies completely different phrases, while one indicates identical meaning between the text pair. This implementation uses a DeBERTa-v3-xsmall and training was performed on the semantic text similarity benchmark dataset which contains over 86k semantic pairs and their scores. We can see that when training is performed over [XX] epochs we see an increase in X% of training time for the LoRA trained model compared to a conventionally tuned model.</p>
                            """)
            with gr.Column(variant="panel"):
                sts_p1 = gr.Textbox(placeholder="Prompt One",label= "Enter Query")
                sts_p2 = gr.Textbox(placeholder="Prompt Two",label= "Enter Query")
                sts_btn = gr.Button("Run")
                btnSTSStats = gr.Button("Display Training Metrics")
                btnTensorLink2 = gr.Button(value="View Tensorboard Graphs", link="https://huggingface.co/Intradiction/text_classification_NoLORA/tensorboard") #to be changed
                gr.Examples(
                    [
                        "the ball is green",
                        "i dont like apples",
                        "our air is clean becase of trees",
                    ],
                    sts_p1,
                    label="Try asking",
                )
                gr.Examples(
                    [
                        "the green ball",
                        "apples are great",
                        "trees produce oxygen",
                    ],
                    sts_p2,
                    label="Try asking",
                )

            with gr.Column(scale=3):
                with gr.Row(variant="panel"):
                    sts_out =  gr.Textbox(label= "Untrained Base Model")
                    STSUntrained = gr.Textbox(label = "Training Informaiton")

                with gr.Row(variant="panel"):
                    sts_out1 = gr.Textbox(label= "Conventionally Trained Model")
                    STSNoLoraStats = gr.Textbox(label = "Training Informaiton")

                with gr.Row(variant="panel"):
                    sts_out2 = gr.Textbox(label= "LoRA Fine Tuned Model")
                    STSLoraStats = gr.Textbox(label = "Training Informaiton")
                    
         sts_btn.click(fn=DebertaUntrained_fn, inputs=[sts_p1,sts_p2], outputs=sts_out)
         sts_btn.click(fn=DebertanoLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out1)
         sts_btn.click(fn=DebertawithLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out2)
         btnSTSStats.click(fn=displayMetricStatsUntrained, outputs=STSUntrained)
         btnSTSStats.click(fn=displayMetricStatsTextSTSNoLora, outputs=STSNoLoraStats)
         btnSTSStats.click(fn=displayMetricStatsTextSTSLora, outputs=STSLoraStats)

    with gr.Tab("More informatioen"):
        gr.Markdown("stuff to add")


if __name__ == "__main__":
    demo.launch()