File size: 12,853 Bytes
eacf0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908a9d5
eacf0bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# System
import torch
from torch import nn
from utils.utils import *
import torch.utils.checkpoint
from typing import List, Optional, Tuple, Union
from .build_module import build_vision_projector, build_vision_tower
from .modeling_internlm2 import InternLM2Model, InternLM2PreTrainedModel

# Dataclass & ModelOutput
from dataclasses import dataclass
from transformers.modeling_outputs import ModelOutput
@dataclass
class TroLCausalLMOutputWithPast(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None

class TroLForCausalLM(InternLM2PreTrainedModel):
    _auto_class = 'AutoModelForCausalLM'

    _tied_weights_keys = ['output.weight']

    def __init__(self, config):
        super().__init__(config)
        
        # Model
        self.model = InternLM2Model(config)
        self.vocab_size = config.vocab_size
        self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.max_length = config.max_length

        # Initialize weights and apply final processing
        self.post_init()

        # Vision Encoder
        self.vit = build_vision_tower()

        # Vision Projection
        self.vision_proj = build_vision_projector(self.config.hidden_size)
    
        # image processing variable
        self.mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1,-1,1,1) * 255
        self.std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1,-1,1,1) * 255

        # prompt rule
        self.prompt_rule = {"system_start": "<s>[UNUSED_TOKEN_146]system\n",
                            "system_end": "[UNUSED_TOKEN_145]",
                            "user_start": "[UNUSED_TOKEN_146]user\n",
                            "user_end": "[UNUSED_TOKEN_145]",
                            "assistant_start": "[UNUSED_TOKEN_146]assistant\n",
                            "assistant_end": "[UNUSED_TOKEN_145]\n</s>",
                            "test_start": "assistant\n",
                            "test_end": "[UNUSED_TOKEN_145]",
                            "split": "\n",
                            }

    def image_processor(self, images):
        norm_images = (images - self.mean.to(images.device)) / self.std.to(images.device)
        return norm_images

    def eval_process(
        self,
        inputs,
        data,
        tokenizer,
        device,
        img_token_number,
    ):
        batched_image = []
        batched_qa_prompt=[]
        for _input in inputs:

            # Visualization
            # imim = _input['image'].cpu().permute(1, 2, 0)

            # adding <image> to question if not included despite being an image, and adding system prompt and <tor> prompt 
            if 'image' in _input.keys() and not '<image>' in _input['question']: _input['question'] = '<image>\n' + _input['question']

            # make question and answer
            question = make_instruction(_input['question'], data, self.prompt_rule)

            # add bundle image tokens if it has <image> token
            question = add_bundle_tokens(question, '<image>', img_token_number) 

            batched_qa_prompt.append(question)

            # making batched image prompt
            if 'image' in _input.keys() and _input['image'] != None: batched_image.append(_input['image'].to(device))

        '''For Final Outputs'''
        qa_prompts = tokenizer(batched_qa_prompt, padding='longest', return_tensors="pt", add_special_tokens=False)

        # [1] input_ids
        input_ids = qa_prompts.input_ids.to(device)
  
        # [2] attention_mask
        attention_mask = qa_prompts.attention_mask.to(device)

        # [3] im_mask
        im_mask = torch.zeros_like(input_ids).bool()
        im_mask[torch.where(input_ids==self.config.image_token_index)] = True

        if len(batched_image):
            return {"input_ids": input_ids, 
                    "attention_mask": attention_mask, 
                    "im_mask": im_mask,
                    "image_features": self.clip_features(self.image_processor(torch.stack(batched_image)).to(device))
                    }
        else:
            return {"input_ids": input_ids, 
                    "attention_mask": attention_mask, 
                    "im_mask": im_mask,
                    }

    def clip_features(self, image):
        self.vit.eval()
        return self.vit(image)

    def _merge_input_embeds_with_image_features(self, image_features, inputs_embeds, input_ids):
        
        # batch index for image feature
        batch_ind_image_feature = 0

        # shape of image_features
        _, C, D = image_features.shape

        for ind, input_id in enumerate(input_ids):
            matching = torch.where(input_id==self.config.image_token_index)
            num_image_tokens_per_one_sample = len(matching[0]) // C
            inputs_embeds[ind][matching] = image_features[batch_ind_image_feature: batch_ind_image_feature+num_image_tokens_per_one_sample].view(-1, D)
            batch_ind_image_feature += num_image_tokens_per_one_sample

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        image_features: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        im_mask: torch.BoolTensor = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, TroLCausalLMOutputWithPast]:

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if inputs_embeds is None:
            # 1. Extra the input embeddings
            inputs_embeds = self.get_input_embeddings()(input_ids)

            # 2. Merge text and images
            if image_features is not None and input_ids.shape[1] != 1:
                image_features = self.vision_proj(image_features.to(inputs_embeds.dtype))
                self._merge_input_embeds_with_image_features(image_features, inputs_embeds, input_ids)

            # In case input_ids.shape[1] == 1 & image_features==None & past_key_values != None, we are in the case of
            # generation with cache
            elif past_key_values is not None and image_features is not None and input_ids.shape[1] == 1:
                # Retrieve the first layer to inspect the logits and mask out the hidden states
                # that are set to 0
                first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]

                # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
                batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)

                # Get the target length
                target_length = input_ids.shape[1]
                past_length = first_layer_past_key_value.shape[-1]

                extended_attention_mask = torch.ones(
                    (attention_mask.shape[0], past_length),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                )

                # Filter out only the tokens that can be un-attended, this can happen
                # if one uses Llava + Fused modules where the cache on the
                # first iteration is already big enough, or if one passes custom cache
                valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
                new_batch_index = batch_index[valid_indices]
                new_non_attended_tokens = non_attended_tokens[valid_indices]

                # Zero-out the places where we don't need to attend
                extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0

                attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
                position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
                im_mask = torch.zeros(inputs_embeds.shape[:2]).bool().to(inputs_embeds.device)

        outputs = self.model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            im_mask=im_mask,
        )

        hidden_states = outputs[0]
        logits = self.output(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            if attention_mask is not None:
                shift_attention_mask = attention_mask[..., 1:]
                shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
                shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
            else:
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
            )

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return TroLCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
    
    def prepare_inputs_for_generation(self,
                                      input_ids,
                                      past_key_values=None,
                                      attention_mask=None,
                                      inputs_embeds=None,
                                      image_features=None,
                                      im_mask=None,
                                      **kwargs):
        if past_key_values is not None:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]

        position_ids = kwargs.get('position_ids', None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1]:]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "image_features": image_features,
                "im_mask": im_mask,
            }
        )
        return model_inputs
    
    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (tuple(
                past_state.index_select(0, beam_idx.to(past_state.device))
                for past_state in layer_past), )
        return reordered_past