File size: 9,854 Bytes
247c8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#!/usr/bin/env python
# coding: utf-8
#### IMPORTING PACKAGES ######
import pandas as pd
import re, string
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import SnowballStemmer
from nltk.corpus import wordnet
from nltk.stem import WordNetLemmatizer

nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('wordnet')

# for model-building
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from xgboost import XGBClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report, roc_curve,roc_auc_score, confusion_matrix
from sklearn.pipeline import Pipeline
# bag of words
from sklearn.feature_extraction.text import TfidfVectorizer
from imblearn.over_sampling import SMOTE
import plotly.express as px
import plotly.graph_objects as go
#############################################################


# ## PRE-PROCESSING

# 1. Common text preprocessing
# text = "   This is a message to be cleaned. It may involve some things like: <br>, ?, :, ''  adjacent spaces and tabs     .  "

# convert to lowercase and remove punctuations and characters and then strip
def preprocess(text):
    text = str(text)
    text = text.lower()  # lowercase text
    text = text.strip()  # get rid of leading/trailing whitespace
    text = re.compile('<.*?>').sub('', text)  # Remove HTML tags/markups
    text = re.compile('[%s]' % re.escape(string.punctuation)).sub(' ',
                                                                  text)  # Replace punctuation with space. Careful since punctuation can sometime be useful
    text = re.sub('\s+', ' ', text)  # Remove extra space and tabs
    text = re.sub(r'\[[0-9]*\]', ' ', text)  # [0-9] matches any digit (0 to 10000...)
    text = re.sub(r'[^\w\s]', '', str(text).lower().strip())
    text = re.sub(r'\d', ' ', text)  # matches any digit from 0 to 100000..., \D matches non-digits
    text = re.sub(r'\s+', ' ',
                  text)  # \s matches any whitespace, \s+ matches multiple whitespace, \S matches non-whitespace

    return text


# 1. STOPWORD REMOVAL
def stopword(string):
    a = [i for i in string.split() if i not in stopwords.words('english')]
    return ' '.join(a)


# 2. STEMMING

# Initialize the stemmer
snow = SnowballStemmer('english')


def stemming(string):
    a = [snow.stem(i) for i in word_tokenize(string)]
    return " ".join(a)


# 3. LEMMATIZATION
# Initialize the lemmatizer
wl = WordNetLemmatizer()


# This is a helper function to map NTLK position tags
# Full list is available here: https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
def get_wordnet_pos(tag):
    if tag.startswith('J'):
        return wordnet.ADJ
    elif tag.startswith('V'):
        return wordnet.VERB
    elif tag.startswith('N'):
        return wordnet.NOUN
    elif tag.startswith('R'):
        return wordnet.ADV
    else:
        return wordnet.NOUN


# Tokenize the sentence
def lemmatizer(string):
    word_pos_tags = nltk.pos_tag(word_tokenize(string))  # Get position tags
    a = [wl.lemmatize(tag[0], get_wordnet_pos(tag[1])) for idx, tag in
         enumerate(word_pos_tags)]  # Map the position tag and lemmatize the word/token
    return " ".join(a)


# FINAL PREPROCESSING
def finalpreprocess(string):
    return lemmatizer(stopword(preprocess(string)))



################ Data Cleaning and model building for NLP Text Classification ##############################
def model_train(dataset, input_feature, target_data,balance_data):
    try:

        lst = []
        data_dict = {}
        df_train = dataset  # pd.read_csv(filepath, encoding='ISO-8859-1')
        print(df_train.shape)

        text = input_feature  # 'Review'
        target = target_data  # 'Liked'

        print("Data Pre-Process Started")
        df_train['clean_text'] = df_train[text].apply(lambda x: finalpreprocess(x))
        # df_train.head()
        print("Data Pre-Process Finished")

        # TF-IDF
        # Convert x_train to vector since model can only run on numbers and not words- Fit and transform
        tfidf_vectorizer = TfidfVectorizer(use_idf=True)
        X_train_vectors_tfidf = tfidf_vectorizer.fit_transform(
            df_train['clean_text'])  # tfidf runs on non-tokenized sentences unlike word2ve

        train_data=X_train_vectors_tfidf
        target_data=df_train[target]

        if balance_data == "Auto":
            d = {}
            d["Before Handling Imbalanced Dataset"] = target_data.value_counts()
            oversample = SMOTE()
            train_data, target_data = oversample.fit_resample(train_data, target_data)
            d["After Handling Imbalanced Dataset"] = target_data.value_counts()
            data_dict["Handling Imbalanced Dataset"] = d
        elif balance_data == "False":
            data_dict["Cannot Handle Imbalanced Dataset,It is set to False"] = ""

        X_train, X_val, y_train, y_val = train_test_split(train_data,
                                                          target_data,
                                                          test_size=0.2,
                                                          shuffle=True)

        pipeline_lr = Pipeline([('lr_classifier', LogisticRegression(solver='liblinear', C=10, penalty='l2'))])
        pipeline_nb = Pipeline([('nb_classifier', MultinomialNB())])
        pipeline_knn = Pipeline([('knn_classifier', KNeighborsClassifier())])
        pipeline_dt = Pipeline([('dt_classifier', DecisionTreeClassifier())])
        pipeline_xg = Pipeline([('xg_classifier', XGBClassifier())])
        pipelines = [pipeline_lr, pipeline_nb, pipeline_knn, pipeline_dt, pipeline_xg]
        best_accuracy = 0.0
        best_classifier = 0
        best_pipeline = ""

        pipe_dict = {0: 'Logistic_Regression', 1: 'MultinomialNB', 2: 'KNeighborsClassifier',
                     3: 'DecisionTreeClassifier', 4: "XGBoost_Classifier"}
        for pipe in pipelines:
            pipe.fit(X_train, y_train)

        models_info = {}
        for i, model in enumerate(pipelines):
            val = "{} Test Accuracy: {}".format(pipe_dict[i], model.score(X_val, y_val))
            lst.append(val)
            models_info[pipe_dict[i]] = model.score(X_val, y_val)
            print("{} Test Accuracy: {}".format(pipe_dict[i], model.score(X_val, y_val)))
        df_models_info = pd.DataFrame(models_info.items(), columns=["Models", "Accuracy"])

        for i, model in enumerate(pipelines):
            if model.score(X_val, y_val) > best_accuracy:
                best_accuracy = model.score(X_val, y_val)
                best_pipeline = model
                best_classifier = i

        val1 = 'Classifier with best accuracy:{}'.format(pipe_dict[best_classifier])
        lst.append(val1)
        print('Classifier with best accuracy:{}'.format(pipe_dict[best_classifier]))

        y_predict = best_pipeline.predict(X_val)
        cn = confusion_matrix(y_val, y_predict)
        print(cn)

        report = classification_report(y_val, y_predict)
        print(report)

        data_dict['Model details'] = lst
        fig = px.histogram(df_models_info, x="Models", y="Accuracy", color="Models")
        fig.update_layout(yaxis_title="Accuracy")
        data_dict['model_comparison'] = fig
        data_dict['Best model'] = lst[-1].split(':')[1]
        data_dict['Best pipeline'] = best_pipeline
        data_dict['Confusion Matrix'] = cn
        data_dict['Classification Report'] = report
        data_dict['tfidf_vector'] = tfidf_vectorizer

        y_scores = best_pipeline.predict_proba(X_val)

        # One hot encode the labels in order to plot them
        y_onehot = pd.get_dummies(y_val, columns=best_pipeline.classes_)

        # Create an empty figure, and iteratively add new lines
        # every time we compute a new class
        fig = go.Figure()
        fig.add_shape(
            type='line', line=dict(dash='dash'),
            x0=0, x1=1, y0=0, y1=1
        )

        for i in range(y_scores.shape[1]):
            y_true = y_onehot.iloc[:, i]
            y_score = y_scores[:, i]

            fpr, tpr, _ = roc_curve(y_true, y_score)
            auc_score = roc_auc_score(y_true, y_score)

            name = f"{y_onehot.columns[i]} (AUC={auc_score:.2f})"
            fig.add_trace(go.Scatter(x=fpr, y=tpr, name=name, mode='lines'))

        fig.update_layout(
            xaxis_title='False Positive Rate',
            yaxis_title='True Positive Rate',
            yaxis=dict(scaleanchor="x", scaleratio=1),
            xaxis=dict(constrain='domain'),
            width=700, height=500
        )
        data_dict['ROC Curve'] = fig

        return data_dict
    except:
        return None
##########################################################################


#### TESTING THE MODEL ON text #########
def predict_text(text, model, tfidf_vectorizer):
    df = pd.DataFrame()
    empty = []
    empty.append(text)
    df['text'] = empty
    df['clean_text'] = df['text'].apply(lambda x: finalpreprocess(x))  # preprocess the data
    X_test = df['clean_text']
    X_vector = tfidf_vectorizer.transform(X_test)  # converting X_test to vector
    y_predict = model.predict(X_vector)
    return y_predict
#########################################

#### TESTING THE MODEL ON CSV PREDICTION ####
def predict_csv(df, model, tfidf_vectorizer, input):
    df['clean_text'] = df[input].apply(lambda x: finalpreprocess(x))  # preprocess the data
    X_test = df['clean_text']
    X_vector = tfidf_vectorizer.transform(X_test)  # converting X_test to vector
    y_predict = model.predict(X_vector)
    return y_predict
###############################################