# Copyright 2024 Rhymes AI. All rights reserved. # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging import os from typing import Tuple import torch import torch.nn as nn import torch.nn.functional as F from torch import nn from transformers import LlamaConfig from transformers.models.llama.modeling_llama import ( ACT2FN, LLAMA_ATTENTION_CLASSES, LlamaDecoderLayer, LlamaForCausalLM, LlamaMLP, LlamaModel, LlamaRMSNorm, LlamaRotaryEmbedding, ) logger = logging.getLogger(__name__) class AriaMoELMConfig(LlamaConfig): """ Configuration class for AriaMoE language model. This class extends the LlamaConfig to include additional parameters specific to the Mixture of Experts (MoE) architecture. """ model_type = "aria_moe_lm" def __init__( self, moe_intermediate_size: int = 4096, moe_num_experts: int = 8, moe_topk: int = 2, moe_z_loss_coeff: float = 1e-5, moe_aux_loss_coeff: float = 1e-3, moe_num_shared_experts: int = 2, **kwargs, ): """ Initialize the AriaMoELMConfig. Args: moe_intermediate_size (int): The intermediate size for MoE layers. Default is 4096. moe_num_experts (int): The number of experts in the MoE layer. Default is 8. moe_topk (int): The number of top experts to route to for each token. Default is 2. moe_z_loss_coeff (float): The coefficient for the auxiliary z-loss. Default is 1e-5. moe_aux_loss_coeff (float): The coefficient for the auxiliary load balancing loss. Default is 1e-3. moe_num_shared_experts (int): The number of shared experts. Default is 2. **kwargs: Additional keyword arguments to be passed to the parent LlamaConfig. """ super().__init__(**kwargs) self.moe_intermediate_size = moe_intermediate_size self.moe_num_experts = moe_num_experts self.moe_topk = moe_topk self.moe_z_loss_coeff = moe_z_loss_coeff self.moe_aux_loss_coeff = moe_aux_loss_coeff self.moe_num_shared_experts = moe_num_shared_experts # copied from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/moe_utils.py#L101-L142 class MoEAuxLossAutoScaler(torch.autograd.Function): """An AutoScaler that compute and scales the grad for auxiliary loss.""" main_loss_backward_scale: torch.Tensor = torch.tensor(1.0) @staticmethod def forward(ctx, output: torch.Tensor, aux_loss: torch.Tensor): """Preserve the aux_loss by storing it in the context to avoid garbage collection. Args: output (torch.Tensor): The output tensor. aux_loss (torch.Tensor): The auxiliary loss tensor. Returns: torch.Tensor: The output tensor. """ ctx.save_for_backward(aux_loss) return output @staticmethod def backward(ctx, grad_output: torch.Tensor): """Compute and scale the gradient for auxiliary loss.. Args: grad_output (torch.Tensor): The gradient of the output. Returns: Tuple[torch.Tensor, torch.Tensor]: The gradient of the output, scaled auxiliary loss gradient. """ (aux_loss,) = ctx.saved_tensors aux_loss_backward_scale = MoEAuxLossAutoScaler.main_loss_backward_scale scaled_aux_loss_grad = torch.ones_like(aux_loss) * aux_loss_backward_scale return grad_output, scaled_aux_loss_grad @staticmethod def set_loss_scale(scale: torch.Tensor): """set the scale of the aux loss. Args: scale (torch.Tensor): The scale value to set. Please ensure that the scale passed in matches the scale of the main_loss. """ MoEAuxLossAutoScaler.main_loss_backward_scale = scale def z_loss_func(logits, z_loss_coeff): """Encourages the router's logits to remain small to enhance stability. Please refer to the ST-MoE paper (https://arxiv.org/pdf/2202.08906.pdf) for details. Args: logits (torch.Tensor): The logits of the router. Returns: torch.Tensor: The logits after applying the z-loss. """ z_loss = torch.mean(torch.square(torch.logsumexp(logits, dim=-1))) * z_loss_coeff return z_loss def switch_load_balancing_loss_func( probs: torch.Tensor, tokens_per_expert: torch.Tensor, topk: int, moe_aux_loss_coeff: float, ): """Calculate the auxiliary loss for better load balacing. Please refer to the Switch Transformer paper (https://arxiv.org/abs/2101.03961) for details. Args: probs (torch.Tensor): The softmax probs output by the router for each token. [num_tokens, num_experts] tokens_per_expert (torch.Tensor): The number of assigned tokens for each expert. [num_experts] Returns: torch.Tensor: The auxiliary loss for load balancing. """ num_tokens = probs.shape[0] * topk num_experts = probs.shape[1] probs_mean_per_expert = probs.mean(dim=0) aux_loss = torch.sum(probs_mean_per_expert * tokens_per_expert) * ( num_experts / num_tokens * moe_aux_loss_coeff ) return aux_loss # adapted from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/router.py#L96-L304 class TopKRouter(nn.Module): """ Top-K Router for Mixture of Experts (MoE) models. This router determines which experts should process each token based on the top-k scoring experts. It also applies auxiliary losses to encourage load balancing among experts. Args: config (AriaMoELMConfig): Configuration object containing MoE-related parameters. """ def __init__(self, config: AriaMoELMConfig): super().__init__() self.config = config self.weight = nn.Parameter( torch.empty((self.config.moe_num_experts, self.config.hidden_size)) ) # FIXME: initialize the weight def gating(self, input: torch.Tensor) -> torch.Tensor: """ Compute the gating logits for each token-expert pair. Args: input (torch.Tensor): Input tensor of shape [batch_size * seq_len, hidden_size]. Returns: torch.Tensor: Logits tensor of shape [batch_size * seq_len, num_experts]. """ logits = torch.nn.functional.linear(input, self.weight) return logits def apply_z_loss(self, logits: torch.Tensor) -> torch.Tensor: """ Apply z-loss to encourage router logits to remain small for enhanced stability. Args: logits (torch.Tensor): Router logits. Returns: torch.Tensor: Logits with z-loss applied. """ z_loss = z_loss_func(logits, self.config.moe_z_loss_coeff) logits = MoEAuxLossAutoScaler.apply(logits, z_loss) return logits def apply_aux_loss( self, logits: torch.Tensor, tokens_per_expert: torch.Tensor, activation: torch.Tensor, ) -> torch.Tensor: """ Apply auxiliary loss for load balancing among experts. Args: logits (torch.Tensor): Router logits. tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert. activation (torch.Tensor): Activation values. Returns: torch.Tensor: Activation with auxiliary loss applied. """ probs = torch.softmax(logits, dim=-1, dtype=torch.float32) aux_loss = switch_load_balancing_loss_func( probs, tokens_per_expert, self.config.moe_topk, self.config.moe_aux_loss_coeff, ) return MoEAuxLossAutoScaler.apply(activation, aux_loss) def routing( self, logits: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Perform the routing operation to determine expert assignments. Args: logits (torch.Tensor): Router logits. Returns: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: - scores: Softmax probabilities for top-k experts. - top_indices: Indices of top-k experts for each token. - tokens_per_expert: Number of tokens assigned to each expert. """ logits = self.apply_z_loss(logits) top_logits, top_indices = torch.topk(logits, k=self.config.moe_topk, dim=1) scores = torch.softmax(top_logits, dim=-1, dtype=torch.float32).type_as(logits) tokens_per_expert = torch.histc( top_indices.flatten(), bins=self.config.moe_num_experts, min=0, max=self.config.moe_num_experts - 1, ) scores = self.apply_aux_loss(logits, tokens_per_expert, scores) return scores, top_indices, tokens_per_expert def forward( self, input: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Forward pass of the TopKRouter. Args: input (torch.Tensor): Input tensor of shape [batch_size * seq_len, hidden_size]. Returns: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: - scores: Softmax probabilities for top-k experts. - top_indices: Indices of top-k experts for each token. - tokens_per_expert: Number of tokens assigned to each expert. """ logits = self.gating(input) logits = logits.view(-1, self.config.moe_num_experts) scores, top_indices, tokens_per_expert = self.routing(logits) return scores, top_indices, tokens_per_expert # adapted from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/token_dispatcher.py#L291-L587 class TokenDispatcher: """ Handles the dispatching and gathering of tokens to and from experts. This class is responsible for permuting tokens based on expert assignments and unpermuting them after expert processing. Args: config (AriaMoELMConfig): Configuration object containing MoE-related parameters. """ def __init__(self, config: AriaMoELMConfig): self.config = config self.hidden_states_shape = None self.reversed_input_permutation_mapping = None def token_permutation( self, hidden_states: torch.Tensor, indices: torch.Tensor ) -> torch.Tensor: """ Permute tokens based on expert assignments. Args: hidden_states (torch.Tensor): Input hidden states. indices (torch.Tensor): Expert assignment indices. Returns: torch.Tensor: Permuted tokens. """ self.hidden_states_shape = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_states.size(-1)) flatten_indices = indices.flatten() sorted_indices = torch.argsort(flatten_indices, stable=True) permuted_tokens = hidden_states.index_select( 0, sorted_indices // self.config.moe_topk ) self.reversed_input_permutation_mapping = sorted_indices return permuted_tokens def token_unpermutation( self, permuted_tokens: torch.Tensor, scores: torch.Tensor ) -> torch.Tensor: """ Unpermute tokens and combine expert outputs. Args: permuted_tokens (torch.Tensor): Tokens after expert processing. scores (torch.Tensor): Expert assignment scores. Returns: torch.Tensor: Unpermuted and combined output. """ num_unpermuted_tokens = scores.numel() unpermuted_tokens = torch.zeros( (num_unpermuted_tokens, permuted_tokens.size(1)), dtype=permuted_tokens.dtype, device=permuted_tokens.device, ) unpermuted_tokens.index_copy_( 0, self.reversed_input_permutation_mapping, permuted_tokens ) unpermuted_tokens = unpermuted_tokens.reshape( -1, self.config.moe_topk, permuted_tokens.size(1) ) unpermuted_tokens = unpermuted_tokens * scores.unsqueeze(-1) unpermuted_tokens = unpermuted_tokens.sum(dim=1).type_as(permuted_tokens) output = unpermuted_tokens.view(self.hidden_states_shape) return output class SharedExpertMLP(LlamaMLP): """ Shared Expert MLP for shared experts. Unlike routed experts, shared experts process all tokens without routing. This class reconfigures the intermediate size in comparison to the LlamaMLP. Args: config (AriaMoELMConfig): Configuration object for the AriaMoE language model. """ def __init__(self, config: AriaMoELMConfig): nn.Module.__init__(self) self.config = config self.hidden_size = config.hidden_size self.intermediate_size = ( config.moe_intermediate_size * config.moe_num_shared_experts ) self.gate_proj = nn.Linear( self.hidden_size, self.intermediate_size, bias=config.mlp_bias ) self.up_proj = nn.Linear( self.hidden_size, self.intermediate_size, bias=config.mlp_bias ) self.down_proj = nn.Linear( self.intermediate_size, self.hidden_size, bias=config.mlp_bias ) self.act_fn = ACT2FN[config.hidden_act] def sequential_gemm(input, weight, tokens_per_expert): """ Compute the matrix multiplication (GEMM) for each expert sequentially. This approach is computationally inefficient, especially when dealing with a large number of experts. Args: input (torch.Tensor): Input tensor of shape (num_tokens, in_features). weight (torch.Tensor): Weight tensor of shape (num_experts, in_features, out_features). tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert. Returns: torch.Tensor: Output tensor of shape (num_tokens, out_features). """ num_tokens = input.shape[0] out_features = weight.shape[-1] output = torch.zeros( num_tokens, out_features, dtype=input.dtype, device=input.device ) cumsum_num_tokens = torch.cumsum(tokens_per_expert, dim=0) # Insert zero at the begining for offset index's convenience zero_tensor = torch.zeros(1, dtype=torch.long, device=cumsum_num_tokens.device) cumsum_num_tokens = torch.cat((zero_tensor, cumsum_num_tokens)) for expert_num in range(weight.shape[0]): start = cumsum_num_tokens[expert_num] end = cumsum_num_tokens[expert_num + 1] tokens = input[start:end] out = torch.matmul(tokens, weight[expert_num]) output[start:end] = out return output try: from grouped_gemm.ops import gmm as experts_gemm if os.environ.get("USE_GROUPED_GEMM", "1") == "0": logger.warning( "environment variable USE_GROUPED_GEMM is set to 0, using sequential GEMM instead." ) experts_gemm = sequential_gemm except ImportError: logger.warning( "`grouped_gemm` is not installed, using sequential GEMM, which is slower." ) experts_gemm = sequential_gemm class GroupedGEMM(nn.Module): """ Grouped GEMM (General Matrix Multiplication) module for efficient expert computation. This module utilizes the grouped_gemm library (https://github.com/fanshiqing/grouped_gemm) for optimized performance. If the grouped_gemm library is not installed, it gracefully falls back to a sequential GEMM implementation, which may be slower but ensures functionality. Args: in_features (int): Number of input features. out_features (int): Number of output features. groups (int): Number of expert groups. """ def __init__(self, in_features, out_features, groups): super().__init__() self.in_features = in_features self.out_features = out_features self.groups = groups self.weight = nn.Parameter(torch.empty(groups, in_features, out_features)) def forward(self, input, tokens_per_expert): """ Perform grouped matrix multiplication. Args: input (torch.Tensor): Input tensor of shape (num_tokens, in_features). tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert. Returns: torch.Tensor: Output tensor of shape (num_tokens, out_features). """ tokens_per_expert = tokens_per_expert.cpu() # Ensure the CUDA device matches the input tensor's device. # This mismatch can occur when using `transformers.AutoModel.from_pretrained` # with `device_map="auto"` on a multi-GPU setup. torch.cuda.set_device(input.device) return experts_gemm(input, self.weight, tokens_per_expert) class GroupedMLP(nn.Module): """ Grouped MLP module for Mixture of Experts. Args: config (AriaMoELMConfig): Configuration object for the model. """ def __init__(self, config: AriaMoELMConfig) -> None: super().__init__() self.config = config self.fc1 = GroupedGEMM( config.hidden_size, config.moe_intermediate_size * 2, config.moe_num_experts ) self.fc2 = GroupedGEMM( config.moe_intermediate_size, config.hidden_size, config.moe_num_experts ) def glu(x): x = torch.chunk(x, 2, dim=-1) return F.silu(x[0]) * x[1] self.activation_func = glu def forward(self, permuted_tokens, tokens_per_expert): """ Forward pass of the Grouped MLP. Args: permuted_tokens (torch.Tensor): Permuted input tokens. tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert. Returns: torch.Tensor: Output tensor after passing through the MLP. """ fc1_output = self.fc1(permuted_tokens, tokens_per_expert) fc1_output = self.activation_func(fc1_output) fc2_output = self.fc2(fc1_output, tokens_per_expert) return fc2_output class MoELayer(nn.Module): """ Mixture of Experts (MoE) Layer for the AriaMoE model. This layer implements the MoE mechanism, which routes input tokens to different experts based on a routing algorithm, processes them through the experts, and then combines the outputs. Args: config (AriaMoELMConfig): Configuration object for the MoE layer. """ def __init__(self, config: AriaMoELMConfig): super().__init__() self.router = TopKRouter(config) self.token_dispatcher = TokenDispatcher(config) self.experts = GroupedMLP(config) self.shared_experts = SharedExpertMLP(config) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: """ Forward pass of the MoE Layer. Args: hidden_states (torch.Tensor): Input tensor of shape (batch_size, sequence_length, hidden_size). Returns: torch.Tensor: Output tensor after passing through the MoE layer. Process: 1. Route tokens to experts using the router. 2. Permute tokens based on routing decisions. 3. Process tokens through experts. 4. Unpermute and combine expert outputs. 5. Add shared expert output to the final result. """ scores, indices, tokens_per_expert = self.router(hidden_states) permuted_tokens = self.token_dispatcher.token_permutation( hidden_states, indices ) expert_output = self.experts(permuted_tokens, tokens_per_expert) output = self.token_dispatcher.token_unpermutation(expert_output, scores) shared_expert_output = self.shared_experts(hidden_states) output += shared_expert_output return output class MoEDecoderLayer(LlamaDecoderLayer): """ Custom Decoder Layer for the AriaMoE model which modifies the standard `LlamaDecoderLayer` by replacing the traditional MLP with a Mixture of Experts (MoE) Layer. Args: config (LlamaConfig): Configuration object for the layer. layer_idx (int): Index of the current layer in the model. """ def __init__(self, config: LlamaConfig, layer_idx: int): nn.Module.__init__(self) self.hidden_size = config.hidden_size self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation]( config=config, layer_idx=layer_idx ) self.mlp = MoELayer(config) self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = LlamaRMSNorm( config.hidden_size, eps=config.rms_norm_eps ) class AriaMoELMModel(LlamaModel): """ Custom LlamaModel for the AriaMoE model which modifies the standard LlamaModel by replacing the `LlamaDecoderLayer` with `MoEDecoderLayer`. This model implements a Mixture of Experts (MoE) approach, where each layer contains multiple expert networks that specialize in different aspects of the input. Args: config (LlamaConfig): Configuration object for the model. """ def __init__(self, config: LlamaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding( config.vocab_size, config.hidden_size, self.padding_idx ) self.layers = nn.ModuleList( [ MoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers) ] ) self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = LlamaRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() class AriaMoELMForCausalLM(LlamaForCausalLM): """ AriaMoE model for causal language modeling tasks. This class extends LlamaForCausalLM to incorporate the Mixture of Experts (MoE) approach, allowing for more efficient and scalable language modeling. Args: config (AriaMoELMConfig): Configuration object for the model. """ _tied_weights_keys = ["lm_head.weight"] config_class = AriaMoELMConfig _no_split_modules = ["MoEDecoderLayer"] def __init__(self, config): super().__init__(config) self.model = AriaMoELMModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def set_z_loss_coeff(self, z_loss_coeff: float): """ Set the coefficient for the z-loss in the MoE routing. Args: z_loss_coeff (float): The coefficient for the z-loss. """ self.config.moe_z_loss_coeff = z_loss_coeff def set_aux_loss_coeff(self, aux_loss_coeff: float): """ Set the coefficient for the auxiliary loss in the MoE routing. Args: aux_loss_coeff (float): The coefficient for the auxiliary loss. """ self.config.moe_aux_loss_coeff = aux_loss_coeff