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Prerequisites
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What is a language model?

A language model is a probabilistic model that assign probabilities to sequence of words.
In practice, a language model allows us to compute the following:

We usually train a neural network to predict these probabilities. A neural network trained on a 
large corpora of text is known as a Large Language Model (LLM).

P [ “China” | “Shanghai is a city in” ]

PromptNext Token
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How to train a language model?

Imagine we want to train a language model on Chinese poems, for example the following one:

English

Before my bed lies a pool of moon bright
I could imagine that it's frost on the ground
I look up and see the bright shining moon
Bowing my head I am thinking of home

Chinese (simplified)

床前明月光
疑是地上霜
举头望明月
低头思故乡李白

Li Bai

https://github.com/hkproj/bert-from-scratch
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How to train a language model?

Neural Network
(Transformer Encoder)

[SOS] Before my bed lies a pool of moon bright

Before my bed lies a pool of moon bright [EOS]

Input sequence (10 tokens)

Target sequence (10 tokens)

Output sequence (10 tokens)

Cross Entropy Loss Run backpropagation to update the weights

TK1 TK2 TK3 TK4 TK5 TK6 TK7 TK8 TK9 TK10
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How to inference a language model?

Imagine you’re a (lazy) student who had to memorize Li Bai’s poem, but only remember the first two 
words. How do you survive an exam?

English

Before my bed lies a pool of moon bright
I could imagine that it's frost on the ground
I look up and see the bright shining moon
Bowing my head I am thinking of home

Chinese (simplified)

床前明月光
疑是地上霜
举头望明月
低头思故乡李白

Li Bai

Before my Ask the Language Model to write 
the rest of the poem!

Prompt

https://github.com/hkproj/bert-from-scratch
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How to inference a language model?

Neural Network
(Transformer Encoder)

[SOS] Before myInput sequence

Output sequence Before my bed

Append the last 
token to the input
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How to inference a language model?

Neural Network
(Transformer Encoder)

[SOS] Before my bedInput sequence

Output sequence Before my bed lies

Append the last 
token to the input
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How to inference a language model?

Neural Network
(Transformer Encoder)

[SOS] Before my bed liesInput sequence

Output sequence Before my bed lies a

Append the last 
token to the input
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How to inference a language model?

Neural Network
(Transformer Encoder)

[SOS] Before my bed lies aInput sequence

Output sequence Before my bed lies a pool

Append the last 
token to the input
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How to inference a language model?

Neural Network
(Transformer Encoder)

[SOS] Before my bed lies a poolInput sequence

Output sequence Before my bed lies a pool of

Append the last 
token to the input
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How to inference a language model?

Neural Network
(Transformer Encoder)

[SOS] Before my bed lies a pool ofInput sequence

Output sequence Before my bed lies a pool of moon

Append the last 
token to the input
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How to inference a language model?

Neural Network
(Transformer Encoder)

[SOS] Before my bed lies a pool of moonInput sequence

Output sequence Before my bed lies a pool of moon bright

Append the last 
token to the input
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How to inference a language model?

Neural Network
(Transformer Encoder)

[SOS] Before my bed lies a pool of moon brightInput sequence

Output sequence Before my bed lies a pool of moon bright [EOS]
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Transformer Encoder architecture

Transformer Transformer Encoder
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Let’s convert the input into Input Embeddings!

[SOS] 

1 

Original sentence
(tokens)

Input IDs (position in 
the vocabulary)

Embedding
(vector of size 512)

3552.566

2745.925

…

…

1070.708

1652.976

We define dmodel = 512, which represents the size of the embedding vector of each word

Before 

90 

9980.851

8373.997

…

…

8752.749

4445.452

my 

231 

6666.314

6239.623

…

…

4611.106

1937.651

bed 

413 

7512.261

8207.994

…

…

6827.572

3222.745

lies 

559 

5463.142

8669.221

…

…

9521.112

9338.361

a 

952 

3571.487

9007.898

…

…

9664.859

1971.318

pool 

421 

2128.306

1685.236

…

…

9648.558

7568.973

of 

7540 

952.207

5450.840

…

…

1.658

2671.529

moon 

62 

3065.914

8145.629

…

…

5491.627

1746.477

bright 

864 

5555.992

5722.099

…

…

3623.291

9791.989

pool 

421 

2128.306

1685.236

…

…

9648.558

7568.973

Just an example.
Not in the original 
poem.
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Why do we use vectors to represent words?

Given the words “cherry”, “digital” and “information”, if we represent the embedding vectors 
using only 2 dimensions (X, Y) and we plot them, we hope to see something like this: the angle 
between words with similar meaning is small, while the angle between words with different 
meaning is big. So, the embeddings “capture” the meaning of the words they represent by 
projecting them into a high-dimensional space of size dmodel.

Source: Speech and Language Processing 3rd Edition Draft, Dan Jurafsky and James H. Martin

We commonly use the cosine similarity, which is based on the dot product between the two 
vectors.

https://github.com/hkproj/bert-from-scratch


Umar Jamil – https://github.com/hkproj/bert-from-scratch

Outline

• Language Models

• Training

• Inference

• Transformer architecture (Encoder)

• Embedding vectors

• Positional encoding

• Self attention and causal mask

• BERT

• The importance of the left and the right context

• BERT pre-training

• Masked Language Model task

• Next Sentence Prediction task

• BERT fine-tuning

• Text Classification Task

• Question Answering Task

https://github.com/hkproj/bert-from-scratch


Umar Jamil – https://github.com/hkproj/bert-from-scratch

Let’s add Positional Encodings!

[SOS] 
Original sentence
(tokens)

Embedding
(vector of size 512)

3552.566

2745.925

…

…

1070.708

1652.976

Before 

9980.851

8373.997

…

…

8752.749

4445.452

my 

6666.314

6239.623

…

…

4611.106

1937.651

bed 

7512.261

8207.994

…

…

6827.572

3222.745

lies 

5463.142

8669.221

…

…

9521.112

9338.361

a 

3571.487

9007.898

…

…

9664.859

1971.318

pool 

2128.306

1685.236

…

…

9648.558

7568.973

of 

952.207

5450.840

…

…

1.658

2671.529

moon 

3065.914

8145.629

…

…

5491.627

1746.477

bright 

5555.992

5722.099

…

…

3623.291

9791.989

+

POS(0, 0)

POS(0, 1)

…

…

POS(0, 510)

POS(0, 511)

POS(1, 0)

POS(1, 1)

…

…

POS(1, 510)

POS(1, 511)

POS(2, 0)

POS(2, 1)

…

…

POS(2, 510)

POS(2, 511)

POS(3, 0)

POS(3, 1)

…

…

POS(3, 510)

POS(3, 511)

POS(4, 0)

POS(4, 1)

…

…

POS(4, 510)

POS(4, 511)

POS(5, 0)

POS(5, 1)

…

…

POS(5, 510)

POS(5, 511)

POS(6, 0)

POS(6, 1)

…

…

POS(6, 510)

POS(6, 511)

POS(7, 0)

POS(7, 1)

…

…

POS(7, 510)

POS(7, 511)

POS(8, 0)

POS(8, 1)

…

…

POS(8, 510)

POS(8, 511)

POS(9, 0)

POS(9, 1)

…

…

POS(9, 510)

POS(9, 511)

+ + + + + + + + +

=

420.386

4562.843

…

…

7395.997

5830.822

Position 
Embedding
(vector of size 512). 
Only computed 
once and reused for 
every sentence 
during training and 
inference.

Encoder Input
(vector of size 512)

7909.878

8386.358

…

…

9878.506

6096.133

6167.866

1013.103

…

…

2487.140

7675.256

7480.045

845.160

…

…

7411.603

1092.178

4497.961

1034.689

…

…

5240.469

9843.646

3687.495

7394.715

…

…

1362.285

40.205

9559.480

8652.636

…

…

8461.192

3316.334

5779.258

4448.448

…

…

3863.333

4838.994

2000.151

3722.530

…

…

2594.810

2743.197

3323.149

1362.544

…

…

1406.061

6417.903

= = = = = = = = =

Each token is 
converted into its 
position in the 
vocabulary (input_id), 
then we transform 
each input_id into an 
embedding vector of 
size 512.

We add to each token 
a vector of size 512 
that indicates its 
position in the 
sentence (positional 
encoding)

https://github.com/hkproj/bert-from-scratch
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How to compute positional encodings?

𝑃𝐸 𝑝𝑜𝑠, 2𝑖 =  sin
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

𝑃𝐸 𝑝𝑜𝑠, 2𝑖 + 1 =  c𝑜𝑠
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

BEFORE MY

PE(0, 0)

PE(0, 1)

PE(0, 2)

…

PE(0, 510)

PE(0, 511)

PE(1, 0)

PE(1, 1)

PE(1, 2)

…

PE(1, 510)

PE(1, 511)

I LOVE

PE(0, 0)

PE(0, 1)

PE(0, 2)

…

PE(0, 510)

PE(0, 511)

PE(1, 0)

PE(1, 1)

PE(1, 2)

…

PE(1, 510)

PE(1, 511)

BED

PE(2, 0)

PE(2, 1)

PE(2, 2)

…

PE(2, 510)

PE(2, 511)

YOU

PE(2, 0)

PE(2, 1)

PE(2, 2)

…

PE(2, 510)

PE(2, 511)

We only need to compute the positional encodings once and 
then reuse them for every sentence, no matter if it is training or 
inference.

Sentence 1

Sentence 2

https://github.com/hkproj/bert-from-scratch
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The self-attention mechanism: input

[SOS] 
Original sentence
(tokens)

Before my bed lies a pool of moon bright 

420.386

4562.843

…

…

7395.997

5830.822

Encoder Input
(vector of size 512)

7909.878

8386.358

…

…

9878.506

6096.133

6167.866

1013.103

…

…

2487.140

7675.256

7480.045

845.160

…

…

7411.603

1092.178

4497.961

1034.689

…

…

5240.469

9843.646

3687.495

7394.715

…

…

1362.285

40.205

9559.480

8652.636

…

…

8461.192

3316.334

5779.258

4448.448

…

…

3863.333

4838.994

2000.151

3722.530

…

…

2594.810

2743.197

3323.149

1362.544

…

…

1406.061

6417.903

420.386 4562.843 … … 7395.997 5830.822

7909.878 8386.358 … … 9878.506 6096.133

6167.866 1013.103 … … 2487.140 7675.256

7480.045 845.160 … … 7411.603 1092.178

4497.961 1034.689 … … 5240.469 9843.646

3687.495 7394.715 … … 1362.285 40.205

9559.480 8652.636 … … 8461.192 3316.334

5779.258 4448.448 … … 3863.333 4838.994

2000.151 3722.530 … … 2594.810 2743.197

3323.149 1362.544 … … 1406.061 6417.903

[SOS] 

Before 

my 

bed 

a 

lies 

pool 

of 

moon 

bright 

Matrix of shape (10, 512) where 
each row represents a token in the 
input sequence.

Each token is 
converted into its 
position in the 
vocabulary (input_id), 
then we transform 
each input_id into an 
embedding vector of 
size 512 and add its 
position vector 
(positional encoding).

https://github.com/hkproj/bert-from-scratch
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The self-attention mechanism: Q, K and V

420.386 4562.843 … … 7395.997 5830.822

7909.878 8386.358 … … 9878.506 6096.133

6167.866 1013.103 … … 2487.140 7675.256

7480.045 845.160 … … 7411.603 1092.178

4497.961 1034.689 … … 5240.469 9843.646

3687.495 7394.715 … … 1362.285 40.205

9559.480 8652.636 … … 8461.192 3316.334

5779.258 4448.448 … … 3863.333 4838.994

2000.151 3722.530 … … 2594.810 2743.197

3323.149 1362.544 … … 1406.061 6417.903

[SOS] 

Before 

my 

bed 

a 

lies 

pool 

of 

moon 

bright 

In a Large Language Models (LLM) we employ the Self-Attention mechanism, which means the Query 
(Q), Key (K) and Value (V) are the same matrix.

420.386 4562.843 … … 7395.997 5830.822

7909.878 8386.358 … … 9878.506 6096.133

6167.866 1013.103 … … 2487.140 7675.256

7480.045 845.160 … … 7411.603 1092.178

4497.961 1034.689 … … 5240.469 9843.646

3687.495 7394.715 … … 1362.285 40.205

9559.480 8652.636 … … 8461.192 3316.334

5779.258 4448.448 … … 3863.333 4838.994

2000.151 3722.530 … … 2594.810 2743.197

3323.149 1362.544 … … 1406.061 6417.903

420.386 4562.843 … … 7395.997 5830.822

7909.878 8386.358 … … 9878.506 6096.133

6167.866 1013.103 … … 2487.140 7675.256

7480.045 845.160 … … 7411.603 1092.178

4497.961 1034.689 … … 5240.469 9843.646

3687.495 7394.715 … … 1362.285 40.205

9559.480 8652.636 … … 8461.192 3316.334

5779.258 4448.448 … … 3863.333 4838.994

2000.151 3722.530 … … 2594.810 2743.197

3323.149 1362.544 … … 1406.061 6417.903

Query ValueKey

(10, 512) (10, 512) (10, 512)

https://github.com/hkproj/bert-from-scratch
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The self-attention mechanism

Self-Attention allows the model to relate words to each other. In our case dk = dmodel = 512.

0.62 0.19 0.02 0.02 0.04 0.01 0.00 0.09 0.00 0.02

0.15 0.00 0.00 0.01 0.00 0.00 0.17 0.00 0.67 0.00

0.09 0.02 0.56 0.02 0.01 0.08 0.11 0.02 0.05 0.03

0.10 0.06 0.03 0.00 0.53 0.12 0.01 0.11 0.00 0.04

0.02 0.00 0.00 0.05 0.80 0.00 0.02 0.04 0.01 0.06

0.01 0.00 0.02 0.02 0.00 0.03 0.68 0.16 0.03 0.06

0.00 0.16 0.02 0.00 0.03 0.56 0.00 0.00 0.22 0.01

0.22 0.00 0.01 0.05 0.19 0.44 0.00 0.00 0.04 0.04

0.00 0.67 0.01 0.00 0.02 0.03 0.23 0.01 0.00 0.03

0.06 0.00 0.03 0.03 0.43 0.21 0.03 0.06 0.13 0.03

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

Q

(10, 512)

KT

(512, 10)

X

=softmax

512

[SOS] 

Before 

my 

bed 

a 

lies 

pool 

of 

moon 

bright 

[SOS] Before my bed lies a pool of moon bright 

Softmax of the dot product of the word “my” 
with the word “bed”. Thanks to the softmax, 
each row sums to 1.

(10, 10)

https://github.com/hkproj/bert-from-scratch
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The self-attention mechanism: the reason 
behind the causal mask

A language model is a probabilistic model that assign probabilities to sequence of words.
In practice, a language model allows us to compute the following:

To model the probability distribution above, each word should only depend on words that 
come before it (left context).
We will see later that in BERT we make use of both, the left and the right context.

P [ “China” | “Shanghai is a city in” ]

PromptNext Token

Shanghai is a city in China, it is also a financial center.

Right contextLeft context

https://github.com/hkproj/bert-from-scratch
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Self-Attention mechanism: causal mask

5.45 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -∞ -∞

4.28 2.46 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -∞

8.17 3.56 5.54 -∞ -∞ -∞ -∞ -∞ -∞ -∞

6.71 4.13 6.76 0.79 -∞ -∞ -∞ -∞ -∞ -∞

5.43 7.59 3.91 6.14 9.03 -∞ -∞ -∞ -∞ -∞

4.42 4.35 7.55 3.14 1.35 7.57 -∞ -∞ -∞ -∞

8.36 6.00 4.56 0.52 3.13 6.78 9.00 -∞ -∞ -∞

2.21 3.72 4.16 6.30 0.66 6.14 7.46 6.77 -∞ -∞

4.08 6.22 5.00 4.20 5.72 5.35 7.46 3.55 4.70 -∞

6.43 8.88 6.17 3.65 4.54 5.22 5.51 5.55 0.64 1.38

[SOS] 

Before 

my 

bed 

a 

lies 

pool 

of 

moon 

bright 

[SOS] Before my bed lies a pool of moon bright 

𝑄𝐾𝑇

𝑑𝑘

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.86 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.92 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.47 0.04 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.18 0.00 0.04 0.75 0.00 0.00 0.00 0.00 0.00

0.02 0.02 0.47 0.01 0.00 0.48 0.00 0.00 0.00 0.00

0.31 0.03 0.01 0.00 0.00 0.06 0.59 0.00 0.00 0.00

0.00 0.01 0.02 0.15 0.00 0.12 0.47 0.23 0.00 0.00

0.02 0.16 0.05 0.02 0.10 0.07 0.55 0.01 0.03 0.00

0.07 0.71 0.05 0.03 0.01 0.02 0.03 0.03 0.02 0.03

[SOS] 

Before 

my 

bed 

a 

lies 

pool 

of 

moon 

bright 

[SOS] Before my bed lies a pool of moon bright 

softmax
𝑄𝐾𝑇

𝑑𝑘
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Self-Attention mechanism: output sequence

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.86 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.92 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.47 0.04 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 0.18 0.00 0.04 0.75 0.00 0.00 0.00 0.00 0.00

0.02 0.02 0.47 0.01 0.00 0.48 0.00 0.00 0.00 0.00

0.31 0.03 0.01 0.00 0.00 0.06 0.59 0.00 0.00 0.00

0.00 0.01 0.02 0.15 0.00 0.12 0.47 0.23 0.00 0.00

0.02 0.16 0.05 0.02 0.10 0.07 0.55 0.01 0.03 0.00

0.07 0.71 0.05 0.03 0.01 0.02 0.03 0.03 0.02 0.03

[SOS] 

Before 

my 

bed 

a 

lies 

pool 

of 

moon 

bright 

[SOS] Before my bed lies a pool of moon bright 

V

(10, 512)

X = Attention Output

(10, 512)

(10, 10)

Each row of the “Attention Output” matrix represents the embedding of the 
output sequence: it captures not only the meaning of each token, not only its 
position, but also the interaction of each token with all the other tokens, but only 
the interactions for which the softmax score is not zero. All the 512 dimensions of 
each vector only depend on the attention scores that are non-zero.
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Introducing BERT

BERT’s architecture is made up of layers of encoders of the Transformer model:

• BERTBASE

• 12 encoder layers
• The size of the hidden size of the feedforward layer is 3072 
• 12 attention heads.

• BERTLARGE

• 24 encoder layers
• The size of the hidden size of the feedforward layer is 4096
• 16 attention heads.

Differences with vanilla Transformer:
• The embedding vector is 768 and 1024 for the two models
• Positional embeddings are absolute and learnt during training and limited 

to 512 positions
• The linear layer head changes according to the application

Uses the WordPiece tokenizer, which also allows sub-word tokens. The vocabulary 
size is ~ 30,000 tokens.

Output layer depending on 
the specific task
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BERT vs GPT/LLaMA

BERT stands for Bidirectional Encoder Representations from Transformers.

1. Unlike common language models, BERT does not handle “special tasks” with prompts, but rather, it 
can be specialized on a particular task by means of fine-tuning.

2. Unlike common language models, BERT has been trained using the left context and the right context.

3. Unlike common language models, BERT is not built specifically for text generation.

4. Unlike common language models, BERT has not been trained on the Next Token Prediction task, but 
rather, on the Masked Language Model and Next Sentence Prediction task.

*common language models = GPT, LLaMA, etc.
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Tasks in GPT/LLaMA vs BERT

Question Answering in GPT/LLaMA: Prompt Engineering Question Answering in BERT: Fine Tuning

Pre-Trained BERT

Fine Tune on QA
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The importance of left context in human conversations

Left context is used for example in phone conversations:

User: Hello! My internet line is not working, could you send a technician?

Operator: Hello! Let me check. Meanwhile, can you try restarting your WiFi router?

User: I have already restarted it but looks like the red light is not going away.

Operator: All right. I’ll send someone.
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The importance of right context in human conversations

Imagine there’s a kid who just boke his mom’s favorite necklace. The kid doesn’t want to tell the truth to 
his mom, so he decides to make up a lie. 

So, instead of saying directly: “Your favorite necklace has broken” 

The kid may say: “Mom, I just saw the cat playing in your room and your favorite necklace has broken.”

Or it may say: “Mom, aliens came through your window with laser guns and your favorite necklace has 
broken.”

As you can see, we conditioned the lie on what we want to say next. Whatever the lie we make up, it will 
be always conditioned on the conclusion we want to arrive to (the necklace being broken).
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Masked Language Model (MLM)

Also known as the Cloze task. It means that randomly selected words in a sentence are masked, and the 
model must predict the right word given the left and right context.

Rome is the capital of Italy, which is why it hosts many government buildings.

Randomly select one or more tokens and replace them with the 
special token [MASK]

Rome is the [MASK] of Italy, which is why it hosts many government buildings.

capital
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Left and right context in BERT

0.62 0.19 0.02 0.02 0.04 0.01 0.00 0.09 0.00 0.02

0.15 0.00 0.00 0.01 0.00 0.00 0.17 0.00 0.67 0.00

0.09 0.02 0.56 0.02 0.01 0.08 0.11 0.02 0.05 0.03

0.10 0.06 0.03 0.00 0.53 0.12 0.01 0.11 0.00 0.04

0.02 0.00 0.00 0.05 0.80 0.00 0.02 0.04 0.01 0.06

0.01 0.00 0.02 0.02 0.00 0.03 0.68 0.16 0.03 0.06

0.00 0.16 0.02 0.00 0.03 0.56 0.00 0.00 0.22 0.01

0.22 0.00 0.01 0.05 0.19 0.44 0.00 0.00 0.04 0.04

0.00 0.67 0.01 0.00 0.02 0.03 0.23 0.01 0.00 0.03

0.06 0.00 0.03 0.03 0.43 0.21 0.03 0.06 0.13 0.03

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

Q

(10, 768)

KT

(768, 10)

X

=softmax

768

[SOS] 

Before 

my 

bed 

a 

lies 

pool 

of 

moon 

bright 

[SOS] Before my bed lies a pool of moon bright 

(10, 10)

This is the reason it is a Bidirectional Encoder.
Each token ”attends” token to its left and tokens to its right in a sentence.
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Masked Language Model (MLM): details

The pre-training procedure selects 15% of the tokens from the sentence to be masked. 
When a token is selected to be masked (suppose the word “capital” is selected):

• 80% of the time it is replaced with the [MASK] token → Rome is the [MASK] of Italy, which is why it hosts many government buildings. 

• 10% of the time it is replaced with a random token → Rome is the zebra of Italy, which is why it hosts many government buildings.

• 10% of the time it is not replaced → Rome is the capital of Italy, which is why it hosts many government buildings.

Rome is the capital of Italy, which is why it hosts many government buildings.
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Masked Language Model (MLM): training

Input (14 tokens):

Output (14 tokens):

Target (1 token): capital

Run backpropagation to update the weightsLoss

Rome is the [mask] of Italy, which is why it hosts many government buildings.

TK1 TK2 TK3 TK4 TK5 TK6 TK7 TK8 TK9 TK10 TK11 TK12 TK13 TK14
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Next Sentence Prediction (NSP)

Many downstream applications (for example choosing the right answer given 4 choices) require learning 
relationships between sentences rather than single tokens, that’s why BERT has been pre-trained on the 
Next Sentence Prediction task.

Before my bed lies a pool of moon bright
I could imagine that it's frost on the ground
I look up and see the bright shining moon
Bowing my head I am thinking of home

Sentence A

Sentence B

Sentence A = Before my bed lies a pool of moon bright
Sentence B = I look up and see the bright shining moon

IsNext NotNext

• 50% of the time, we select the 
actual next sentence.

• 50% of the time we select a 
random sentence from the text.
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Next Sentence Prediction (NSP): segmentation embedding

Given the sentence A and the sentence B, how can BERT understand which tokens belongs to the 
sentence A and which to the sentence B? We introduce the segmentation embeddings!

We also introduce two special tokens: [CLS] and [SEP]
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Next Sentence Prediction (NSP): training

Input (20 tokens):

Output (20 tokens):

Target (1 token): NotNext

Run backpropagation to update the weightsLoss

[CLS] Before my bed lies a pool of moon bright [SEP] I look up and see the bright shining moon

TK
1

TK
2

TK
3

TK
4

TK
5

TK
6

TK
7

TK
8

TK
9

TK
10

TK
11

TK
12

TK
13

TK
14

TK
15

TK
16

TK
17

TK
18

TK
19

TK
20

Linear Layer (2 output features) + Softmax

Before my bed lies a pool of moon bright
I could imagine that it's frost on the ground
I look up and see the bright shining moon
Bowing my head I am thinking of home

Sentence A Sentence B

Sentence 
embedding
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[CLS] token in BERT

0.62 0.19 0.02 0.02 0.04 0.01 0.00 0.09 0.00 0.02

0.15 0.00 0.00 0.01 0.00 0.00 0.17 0.00 0.67 0.00

0.09 0.02 0.56 0.02 0.01 0.08 0.11 0.02 0.05 0.03

0.10 0.06 0.03 0.00 0.53 0.12 0.01 0.11 0.00 0.04

0.02 0.00 0.00 0.05 0.80 0.00 0.02 0.04 0.01 0.06

0.01 0.00 0.02 0.02 0.00 0.03 0.68 0.16 0.03 0.06

0.00 0.16 0.02 0.00 0.03 0.56 0.00 0.00 0.22 0.01

0.22 0.00 0.01 0.05 0.19 0.44 0.00 0.00 0.04 0.04

0.00 0.67 0.01 0.00 0.02 0.03 0.23 0.01 0.00 0.03

0.06 0.00 0.03 0.03 0.43 0.21 0.03 0.06 0.13 0.03

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

Q

(10, 768)

KT

(768, 10)

X

=softmax

768

[CLS] 

Before 

my 

bed 

a 

lies 

pool 

of 

moon 

bright 

[CLS] Before my bed lies a pool of moon bright 

(10, 10)

The [CLS] token always interacts with all the other tokens, as we do not 
use any mask.
So, we can consider the [CLS] token as a token that “captures” the 
information from all the other tokens.
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[CLS] token: output sequence

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘

𝑉

0.62 0.19 0.02 0.02 0.04 0.01 0.00 0.09 0.00 0.02

0.15 0.00 0.00 0.01 0.00 0.00 0.17 0.00 0.67 0.00

0.09 0.02 0.56 0.02 0.01 0.08 0.11 0.02 0.05 0.03

0.10 0.06 0.03 0.00 0.53 0.12 0.01 0.11 0.00 0.04

0.02 0.00 0.00 0.05 0.80 0.00 0.02 0.04 0.01 0.06

0.01 0.00 0.02 0.02 0.00 0.03 0.68 0.16 0.03 0.06

0.00 0.16 0.02 0.00 0.03 0.56 0.00 0.00 0.22 0.01

0.22 0.00 0.01 0.05 0.19 0.44 0.00 0.00 0.04 0.04

0.00 0.67 0.01 0.00 0.02 0.03 0.23 0.01 0.00 0.03

0.06 0.00 0.03 0.03 0.43 0.21 0.03 0.06 0.13 0.03

[CLS] 

Before 

my 

bed 

a 

lies 

pool 

of 

moon 

bright 

[CLS] Before my bed lies a pool of moon bright 

V

(10, 768)

X = Attention Output

(10, 768)

(10, 10)

Each row of the “Attention Output” matrix represents the embedding of the 
output sequence: it captures not only the meaning of each token, not only its 
position, but also the interaction of each token with all the other tokens, but only 
the interactions for which the softmax score is not zero. All the 512 dimensions of 
each vector only depend on the attention scores that are non-zero.
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Fine-Tuning BERT

Pre-Trained BERT

Fine Tune on question 
answering (QA)

Fine Tune on text 
classification
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Text Classification

Text classification is the task of assigning a label to a piece of text. For example imagine we are running 
an internet provider and we receive complaints from our customers. We may want to classify requests 
coming from users as hardware problems, software problems or billing issues.

My router’s led is not working, I tried 
changing the power socket but still 
nothing.

My router’s web page doesn’t allow me to 
change password anymore… I tried 
restarting it but nothing.

In this month’s bill I have been charged 
100$ instead of the usual 60$, why is that?

Hardware Software Billing
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Text Classification: training

Hardware Billing

My router’s led is not working, I tried changing the power socket but still nothing.

Software
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Text Classification: training

Input (16 tokens):

Output (16 tokens):

Target (1 token): Hardware

Run backpropagation to update the weightsLoss

[CLS] My router’s led is not working, I tried changing the power socket but still nothing.

TK
1

TK
2

TK
3

TK
4

TK
5

TK
6

TK
7

TK
8

TK
9

TK
10

TK
11

TK
12

TK
13

TK
14

Linear Layer (3 output features) + Softmax
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Question Answering

Question answering is the task of answering questions given a context.

Context: “Shanghai is a City in China, it is also a financial center, its fashion capital and industrial city.”

Question: "What is the fashion capital of China?"

Answer: “Shanghai is a City in China, it is also a financial center, its fashion capital and industrial city.”

The model has to highlight the part of text that contains the answer.

Two problems:

1. We need to find a way for BERT to understand which part of the input is the context, which one is the question.

2. We also need to find a way for BERT to tell us where the answer starts and where it ends in the context provided.
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Question Answering: sentence A and B

Sentence A Sentence B
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Question Answering: start and end positions

Input (27 tokens):

Output (27 tokens):

[CLS] What is the fashion capital of China? [SEP] Shanghai is a City in China, it is also a financial center, its fashion 
capital and industrial city. 

TK
1

TK
2

TK
3

…
TK
7

TK
8

TK
9

TK
10

TK
11

TK
12

TK
13

.. .. ..
TK
22

TK
23

TK
24

TK
25

TK
26

TK
27

Linear Layer (2 output features) + Softmax

Target (1 token): start=TK10, end=TK10

Run backpropagation to update the weightsLoss
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Thanks for watching!
Don’t forget to subscribe for 
more amazing content on AI 
and Machine Learning!

https://github.com/hkproj/bert-from-scratch
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