manxiaoman0 commited on
Commit
76a8988
1 Parent(s): 0a6aa91

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +203 -203
README.md CHANGED
@@ -1,251 +1,251 @@
1
  ---
2
- language: en
3
- tags:
4
- - exbert
5
- license: apache-2.0
6
- datasets:
7
- - bookcorpus
8
- - wikipedia
9
  ---
10
 
11
- # BERT base model (uncased)
12
 
13
- Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in
14
- [this paper](https://arxiv.org/abs/1810.04805) and first released in
15
- [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference
16
- between english and English.
17
 
18
- Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
19
- the Hugging Face team.
20
 
21
- ## Model description
22
 
23
- BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it
24
- was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of
25
- publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
26
- was pretrained with two objectives:
27
 
28
- - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
29
- the entire masked sentence through the model and has to predict the masked words. This is different from traditional
30
- recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
31
- GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the
32
- sentence.
33
- - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
34
- they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
35
- predict if the two sentences were following each other or not.
36
 
37
- This way, the model learns an inner representation of the English language that can then be used to extract features
38
- useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard
39
- classifier using the features produced by the BERT model as inputs.
40
 
41
- ## Model variations
42
 
43
- BERT has originally been released in base and large variations, for cased and uncased input text. The uncased models also strips out an accent markers.
44
- Chinese and multilingual uncased and cased versions followed shortly after.
45
- Modified preprocessing with whole word masking has replaced subpiece masking in a following work, with the release of two models.
46
- Other 24 smaller models are released afterward.
47
 
48
- The detailed release history can be found on the [google-research/bert readme](https://github.com/google-research/bert/blob/master/README.md) on github.
49
 
50
- | Model | #params | Language |
51
  |------------------------|--------------------------------|-------|
52
- | [`bert-base-uncased`](https://huggingface.co/bert-base-uncased) | 110M | English |
53
- | [`bert-large-uncased`](https://huggingface.co/bert-large-uncased) | 340M | English | sub
54
- | [`bert-base-cased`](https://huggingface.co/bert-base-cased) | 110M | English |
55
- | [`bert-large-cased`](https://huggingface.co/bert-large-cased) | 340M | English |
56
- | [`bert-base-chinese`](https://huggingface.co/bert-base-chinese) | 110M | Chinese |
57
- | [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) | 110M | Multiple |
58
- | [`bert-large-uncased-whole-word-masking`](https://huggingface.co/bert-large-uncased-whole-word-masking) | 340M | English |
59
- | [`bert-large-cased-whole-word-masking`](https://huggingface.co/bert-large-cased-whole-word-masking) | 340M | English |
60
-
61
- ## Intended uses & limitations
62
-
63
- You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
64
- be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
65
- fine-tuned versions of a task that interests you.
66
-
67
- Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
68
- to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
69
- generation you should look at model like GPT2.
70
-
71
- ### How to use
72
-
73
- You can use this model directly with a pipeline for masked language modeling:
74
-
75
- ```python
76
- >>> from transformers import pipeline
77
- >>> unmasker = pipeline('fill-mask', model='bert-base-uncased')
78
- >>> unmasker("Hello I'm a [MASK] model.")
79
-
80
- [{'sequence': "[CLS] hello i'm a fashion model. [SEP]",
81
- 'score': 0.1073106899857521,
82
- 'token': 4827,
83
- 'token_str': 'fashion'},
84
- {'sequence': "[CLS] hello i'm a role model. [SEP]",
85
- 'score': 0.08774490654468536,
86
- 'token': 2535,
87
- 'token_str': 'role'},
88
- {'sequence': "[CLS] hello i'm a new model. [SEP]",
89
- 'score': 0.05338378623127937,
90
- 'token': 2047,
91
- 'token_str': 'new'},
92
- {'sequence': "[CLS] hello i'm a super model. [SEP]",
93
- 'score': 0.04667217284440994,
94
- 'token': 3565,
95
- 'token_str': 'super'},
96
- {'sequence': "[CLS] hello i'm a fine model. [SEP]",
97
- 'score': 0.027095865458250046,
98
- 'token': 2986,
99
- 'token_str': 'fine'}]
100
  ```
101
 
102
- Here is how to use this model to get the features of a given text in PyTorch:
103
 
104
- ```python
105
- from transformers import BertTokenizer, BertModel
106
- tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
107
- model = BertModel.from_pretrained("bert-base-uncased")
108
- text = "Replace me by any text you'd like."
109
- encoded_input = tokenizer(text, return_tensors='pt')
110
- output = model(**encoded_input)
111
  ```
112
 
113
- and in TensorFlow:
114
 
115
- ```python
116
- from transformers import BertTokenizer, TFBertModel
117
- tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
118
- model = TFBertModel.from_pretrained("bert-base-uncased")
119
- text = "Replace me by any text you'd like."
120
- encoded_input = tokenizer(text, return_tensors='tf')
121
- output = model(encoded_input)
122
  ```
123
 
124
- ### Limitations and bias
125
-
126
- Even if the training data used for this model could be characterized as fairly neutral, this model can have biased
127
- predictions:
128
-
129
- ```python
130
- >>> from transformers import pipeline
131
- >>> unmasker = pipeline('fill-mask', model='bert-base-uncased')
132
- >>> unmasker("The man worked as a [MASK].")
133
-
134
- [{'sequence': '[CLS] the man worked as a carpenter. [SEP]',
135
- 'score': 0.09747550636529922,
136
- 'token': 10533,
137
- 'token_str': 'carpenter'},
138
- {'sequence': '[CLS] the man worked as a waiter. [SEP]',
139
- 'score': 0.0523831807076931,
140
- 'token': 15610,
141
- 'token_str': 'waiter'},
142
- {'sequence': '[CLS] the man worked as a barber. [SEP]',
143
- 'score': 0.04962705448269844,
144
- 'token': 13362,
145
- 'token_str': 'barber'},
146
- {'sequence': '[CLS] the man worked as a mechanic. [SEP]',
147
- 'score': 0.03788609802722931,
148
- 'token': 15893,
149
- 'token_str': 'mechanic'},
150
- {'sequence': '[CLS] the man worked as a salesman. [SEP]',
151
- 'score': 0.037680890411138535,
152
- 'token': 18968,
153
- 'token_str': 'salesman'}]
154
-
155
- >>> unmasker("The woman worked as a [MASK].")
156
-
157
- [{'sequence': '[CLS] the woman worked as a nurse. [SEP]',
158
- 'score': 0.21981462836265564,
159
- 'token': 6821,
160
- 'token_str': 'nurse'},
161
- {'sequence': '[CLS] the woman worked as a waitress. [SEP]',
162
- 'score': 0.1597415804862976,
163
- 'token': 13877,
164
- 'token_str': 'waitress'},
165
- {'sequence': '[CLS] the woman worked as a maid. [SEP]',
166
- 'score': 0.1154729500412941,
167
- 'token': 10850,
168
- 'token_str': 'maid'},
169
- {'sequence': '[CLS] the woman worked as a prostitute. [SEP]',
170
- 'score': 0.037968918681144714,
171
- 'token': 19215,
172
- 'token_str': 'prostitute'},
173
- {'sequence': '[CLS] the woman worked as a cook. [SEP]',
174
- 'score': 0.03042375110089779,
175
- 'token': 5660,
176
- 'token_str': 'cook'}]
177
  ```
178
 
179
- This bias will also affect all fine-tuned versions of this model.
180
 
181
- ## Training data
182
 
183
- The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038
184
- unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and
185
- headers).
186
 
187
- ## Training procedure
188
 
189
- ### Preprocessing
190
 
191
- The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are
192
- then of the form:
193
 
194
  ```
195
- [CLS] Sentence A [SEP] Sentence B [SEP]
196
  ```
197
 
198
- With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus, and in
199
- the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
200
- consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
201
- "sentences" has a combined length of less than 512 tokens.
202
 
203
- The details of the masking procedure for each sentence are the following:
204
- - 15% of the tokens are masked.
205
- - In 80% of the cases, the masked tokens are replaced by `[MASK]`.
206
- - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
207
- - In the 10% remaining cases, the masked tokens are left as is.
208
 
209
- ### Pretraining
210
 
211
- The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size
212
- of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer
213
- used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01,
214
- learning rate warmup for 10,000 steps and linear decay of the learning rate after.
215
 
216
- ## Evaluation results
217
 
218
- When fine-tuned on downstream tasks, this model achieves the following results:
219
 
220
- Glue test results:
221
 
222
- | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average |
223
  |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:|
224
  | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 |
225
 
226
 
227
- ### BibTeX entry and citation info
228
-
229
- ```bibtex
230
- @article{DBLP:journals/corr/abs-1810-04805,
231
- author = {Jacob Devlin and
232
- Ming{-}Wei Chang and
233
- Kenton Lee and
234
- Kristina Toutanova},
235
- title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
236
- Understanding},
237
- journal = {CoRR},
238
- volume = {abs/1810.04805},
239
- year = {2018},
240
- url = {http://arxiv.org/abs/1810.04805},
241
- archivePrefix = {arXiv},
242
- eprint = {1810.04805},
243
- timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
244
- biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
245
- bibsource = {dblp computer science bibliography, https://dblp.org}
246
  }
247
  ```
248
 
249
- <a href="https://huggingface.co/exbert/?model=bert-base-uncased">
250
- <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
251
  </a>
 
1
  ---
2
+ 语言: 半方
3
+ 标签:
4
+ - 埃克伯特
5
+ 许可证: 数据集2.0
6
+ 数据集:
7
+ - 图书语料库
8
+ - 维基百科
9
  ---
10
 
11
+ #伯特基本模型(无案例)
12
 
13
+ 使用蒙版语言建模(传销)目标的英语语言预训练模型。年推出的
14
+ [这篇论文](https://arxiv.org/abs/1810.04805)并首次发布于
15
+ [这个仓库](https://github.com/google-research/bert). 这个模型是无壳的:它没有什么区别。
16
+ 在英语和英语之间。
17
 
18
+ 免责声明:发布BERT的团队没有为这个模型写一个模型卡,所以这个模型卡是由
19
+ 拥抱脸团队。
20
 
21
+ ##模型描述
22
 
23
+ BERT是一个以自我监督的方式对大量英语数据进行预培训的变压器模型。这就是我的意思
24
+ 只对原始文本进行了预训练,没有人以任何方式标记它们(这就是为什么它可以使用大量的
25
+ 可公开获取的数据),通过自动过程从这些文本中生成输入和标签。更准确地说,它
26
+ 进行了预培训,目标有两个:
27
 
28
+ —屏蔽语言建模(传销):取一个句子,该模型随机屏蔽输入中15%的单词,然后运行
29
+ 通过该模型对整个蒙面句进行预测,并对蒙面词进行预测。这是不同于传统的
30
+ 递归神经网络(RNNs),通常看到一个接一个的话,或从自回归模型,如
31
+ GPT,它在内部屏蔽未来令牌。它允许模型学习一个双向表示的
32
+ 句子
33
+ —下一句预测(NSP):在预训练过程中,模型连接两个被屏蔽的句子作为输入。有时
34
+ 它们对应于原文中相邻的句子,有时不对应。然后模型必须
35
+ 预测这两个句子是否前后一致。
36
 
37
+ 通过这种方式,该模型学习英语语言的内部表示,然后可用于提取特征
38
+ 对于下游任务很有用:例如,如果您有一个标记句子的数据集,您可以训练一个标准的
39
+ 分类器使用BERT模型产生的特征作为输入。
40
 
41
+ ##模型变化
42
 
43
+ BERT最初已经发布了基本和大的变化,为大小写和非大小写输入文本。非套色模型还去掉了重音标记。
44
+ 中文和多语言的非加壳和加壳版本之后不久。
45
+ 修改后的预处理与全字掩蔽取代子块掩蔽在随后的工作中,与两个模型的释放。
46
+ 其他24个较小的模型发布后。
47
 
48
+ 详细的发布历史记录可以在[谷歌研究/伯特自述](https://github.com/google-research/bert/blob/master/README.md)在推特��。
49
 
50
+ 模型参数语言
51
  |------------------------|--------------------------------|-------|
52
+ | [`bert-base-uncased`](https://huggingface.co/bert-base-uncased)英语
53
+ | [`大无壳`](https://huggingface.co/bert-large-uncased)340M
54
+ | [`贝尔特式`](https://huggingface.co/bert-base-cased)英语
55
+ | [`伯特大箱`](https://huggingface.co/bert-large-cased)英语
56
+ | [`柏特汉语`](https://huggingface.co/bert-base-chinese)中国大陆
57
+ | [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) | 110多重|
58
+ | [`bert-large-uncased-whole-word-masking`](https://huggingface.co/bert-large-uncased-whole-word-masking)英语
59
+ | [`bert-large-cased-whole-word-masking`](https://huggingface.co/bert-large-cased-whole-word-masking)英语
60
+
61
+ ##预期用途和限制
62
+
63
+ 您可以将原始模型用于屏蔽语言建模或下一句预测,但它主要用于
64
+ 对下游任务进行微调。请参阅[模型中心](https://huggingface.co/models?filter=bert)寻找
65
+ 您感兴趣的任务的微调版本。
66
+
67
+ 请注意,该模型的主要目的是在使用整个句子的任务(可能是屏蔽的)上进行微调。
68
+ 进行决策,如序列分类、标记分类或问题回答。对于任务(如文本
69
+ 代你应该看看模型像GPT 2。
70
+
71
+ ###如何使用
72
+
73
+ 您可以将此模型直接与管道一起使用,以进行屏蔽语言建模:
74
+
75
+ ```大蟒
76
+ >>> 从变压器进口管道
77
+ >>> 无掩码=管道(“填充掩码”,模型=“基于伯特—无套管”)
78
+ >>> 揭开伪装者("你好我是【面具】模特。")
79
+
80
+ 序列:“你好,我是时装模特。【九月】”,
81
+ '得分'0.1073106899857521
82
+ 代币:4827
83
+ “时尚”的标签
84
+ 序列:“【CLS】你好,我是一个榜样。【九月】”,
85
+ '得分:0.08774490654468536
86
+ 代币2535
87
+ 字符串:“角色”
88
+ 序列:“你好,我是新模特。【九月】”,
89
+ '得分'0.05338378623127937
90
+ 代币:2047
91
+ token_str:新的字符串,
92
+ 序列:“你好,我是超级模特。【九月】”,
93
+ '得分:0.04667217284440994
94
+ 代币:3565
95
+ '令牌_str:'超级的'}
96
+ 序列:“【CLS】你好,我是一个很好的模特。【九月】”,
97
+ '得分'0.027095865458250046
98
+ 代币:2986
99
+ 字符串:‘很好’}
100
  ```
101
 
102
+ 下面是如何使用该模型在PyTorch中获取给定文本的特征:
103
 
104
+ ```大蟒
105
+ 从变压器导入BertTokenizer,BertModel
106
+ 标记器=BertTokenizer.from_pretrained('bert-base-uncased')
107
+ 模型=BertModel.from_pretrained"Be rt-base-uncased"
108
+ 文本=“把我换成任何你喜欢的短信。”
109
+ encoded_input=标记器(文本,return_tensors='pt'
110
+ 输出=模型(**编码输入)
111
  ```
112
 
113
+ TensorFlow中:
114
 
115
+ ```大蟒
116
+ 从变压器进口BertTokenizer,TFBertModel
117
+ 标记器=BertTokenizer.from_pretrained('bert-base-uncased')
118
+ 模型=TFBertModel.from_pretrained"基于Bert-uncased"
119
+ 文本=“把我换成任何你喜欢的短信。”
120
+ 密码输入=断字器(文本,返回张量=‘tf’)
121
+ 输出=模型(编码输入)
122
  ```
123
 
124
+ ###局限性和偏见
125
+
126
+ 即使用于该模型的训练数据可以被认为是相当中性的,该模型也可能有偏差。
127
+ 预测:
128
+
129
+ ```大蟒
130
+ >>> 从变压器进口管道
131
+ >>> Un masker=管道(“填充掩码”,模型=“基于伯特-无套管”)
132
+ >>> 揭开面具者(“这个人作为面具工作。”)
133
+
134
+ 这个人做木匠。【九月十四日】
135
+ ‘得分’:0.09747550636529922
136
+ 代币:10533
137
+ token_str:‘木匠’}
138
+ 顺序:这个人当服务员。【九月十四日】
139
+ ‘得分’:0.0523831807076931
140
+ 代币:15610
141
+ token_str’:‘服务员’,
142
+ 顺序:这个人是理发师。【九月十四日】
143
+ ‘得分’:0.04962705448269844
144
+ 代币:13362
145
+ token_str:“理发师”,
146
+ 顺序:这个人是个机械师。【九月十四日】
147
+ ‘得分’:0.03788609802722931
148
+ 代币:15893
149
+ token_str:‘机械师’,
150
+ 顺序:这个人做推销员。【九月十四日】
151
+ ‘得分’:0.037680890411138535
152
+ 代币:18968
153
+ 'token_str:'销售员'}
154
+
155
+ >>> 揭开面具者(“这个女人作为面具工作。”)
156
+
157
+ 这个女人是一名护士。【九月十四日】
158
+ ‘得分’:0.21981462836265564
159
+ 代币:6821
160
+ token_str:’nurse的意思是‘护士’,
161
+ 序列号:【CLS】这个女人是个服务员。【九月十四日】
162
+ ‘得分’:0.1597415804862976
163
+ 代币:13877
164
+ token_str:女服务员),
165
+ 序列号:【CLS】这个女人是女佣。【九月十四日】
166
+ ‘得分’:0.1154729500412941
167
+ 代币:10850
168
+ 'token_str:'女仆'}
169
+ {“序列”:“[CLS]那个女人是个妓女。[九月]
170
+ '得分:0.037968918681144714
171
+ 代币:19215
172
+ “令牌_str”:“妓女”}
173
+ 序列号:那个女人是个厨师。【九月十四日】
174
+ ‘得分’:0.03042375110089779
175
+ 代币:5660
176
+ ‘Token_str’:‘Cook’}]
177
  ```
178
 
179
+ 这种偏差也将影响该模型的所有微调版本。
180
 
181
+ ##训练数据
182
 
183
+ BERT模型的预训练[书店](https://yknzhu.wixsite.com/mbweb),一个由11038
184
+ 未出版的书籍和[英语维基百科](https://en.wikipedia.org/wiki/English_Wikipedia)(不包括清单、表格及
185
+ 标头)。
186
 
187
+ ##培训程序
188
 
189
+ ###预处理
190
 
191
+ 这些文本使用单字块和30,000的词汇量进行了小写和标记化。模型的输入是
192
+ 然后的形式:
193
 
194
  ```
195
+ 【课文】第一句句子B
196
  ```
197
 
198
+ 0.5的概率,句子A和句子B在原语料中对应两个连续的句子,而在
199
+ 其他的情况,是语料库中的另一个随机句子。注意,这里被认为是句子的是一个
200
+ 连续的文本长度通常比一句话长。唯一的约束是,结果与两个
201
+ “句子”的组合长度小于512个标记。
202
 
203
+ 每个句子的掩蔽程序的细节如下:
204
+ -15%的令牌被屏蔽。
205
+ -在80%的情况下,被屏蔽的令牌被替换为`【面具】`.
206
+ -在10%的情况下,被屏蔽的令牌被替换为一个随机令牌(与它们替换的令牌不同)。
207
+ -在剩下的10%的情况下,被屏蔽的令牌保持原样。
208
 
209
+ ###培训前
210
 
211
+ 该模型在4个云处理器的豆荚配置(共16个芯片)100万步骤与批量大小的训练
212
+ 256个。对于90%的步骤,序列长度被限制为128个令牌,对于剩余的10%,序列长度限制为512个令牌。优化器
213
+ 亚当的学习率是1E4\\(\贝塔{1} = 0.9\\) 和\\(\贝塔{2} = 0.999\\),重量衰减为0.01
214
+ 学习速率预热10,000步和学习速率线性衰减后。
215
 
216
+ ##评价结果
217
 
218
+ 当对下游任务进行微调时,此模型可实现以下结果:
219
 
220
+ 胶水测试结果:
221
 
222
+ 毫米/毫米第二次世界大战平均数|平均数
223
  |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:|
224
  | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 |
225
 
226
 
227
+ ###BibTeX条目和引文信息
228
+
229
+ ```比布特
230
+ @文章{DBLP:journals/corr/abs-1810-04805
231
+ 作者={雅各布德夫林和
232
+ {-}魏昌和
233
+ 肯顿·李和
234
+ 克里斯蒂娜·图塔诺瓦}
235
+ 标题={{伯特:}语言深层双向Transformers的预训练
236
+ 理解}
237
+ 日记帐={CoRR}
238
+ 体积=第三章,
239
+ 年份={2018},
240
+ 网址=http://arxiv.org/abs/1810.04805},
241
+ 档案前缀={arXiv}
242
+ 电子版={1810.04805}
243
+ 时间戳={2018年10月30日星期二203956秒+0100}
244
+ 双毛刺={https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
245
+ Bib source={dblp计算机科学参考书目,https://dblp.org}
246
  }
247
  ```
248
 
249
+ <a href=“https://huggingface.co/exbert/?model=bert-base-uncased”>
250
+ <img宽度=300像素 src=“https://cdn-media.huggingface.co/exbert/button.png”>
251
  </a>