# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.utils import BaseOutput from diffusers.schedulers.scheduling_utils import SchedulerMixin import torch.nn.functional as F def gumbel_noise(t, generator=None): device = generator.device if generator is not None else t.device noise = torch.zeros_like(t, device=device).uniform_(0, 1, generator=generator).to(t.device) return -torch.log((-torch.log(noise.clamp(1e-20))).clamp(1e-20)) def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None): confidence = torch.log(probs.clamp(1e-20)) + temperature * gumbel_noise(probs, generator=generator) sorted_confidence = torch.sort(confidence, dim=-1).values cut_off = torch.gather(sorted_confidence, 1, mask_len.long()) masking = confidence < cut_off return masking @dataclass class SchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample `(x_{0})` based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.Tensor pred_original_sample: torch.Tensor = None class Scheduler(SchedulerMixin, ConfigMixin): order = 1 temperatures: torch.Tensor @register_to_config def __init__( self, mask_token_id: int, masking_schedule: str = "cosine", ): self.temperatures = None self.timesteps = None def set_timesteps( self, num_inference_steps: int, temperature: Union[int, Tuple[int, int], List[int]] = (2, 0), device: Union[str, torch.device] = None, ): self.timesteps = torch.arange(num_inference_steps, device=device).flip(0) if isinstance(temperature, (tuple, list)): self.temperatures = torch.linspace(temperature[0], temperature[1], num_inference_steps, device=device) else: self.temperatures = torch.linspace(temperature, 0.01, num_inference_steps, device=device) ### from https://huggingface.co/transformers/v3.2.0/_modules/transformers/generation_utils.html def top_k_top_p_filtering( self, logits, top_k: int = 0, top_p: float = 1.0, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1, ): """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens_to_keep per batch example in the output From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ if top_k > 0: top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = torch.zeros_like(logits, dtype=torch.bool).scatter_(-1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = filter_value return logits def step( self, model_output: torch.Tensor, timestep: torch.long, sample: torch.LongTensor, starting_mask_ratio: int = 1, generator: Optional[torch.Generator] = None, return_dict: bool = True, using_topk_topp: Optional[bool] = False, sampling_temperature: Optional[float] = 1.0, ) -> Union[SchedulerOutput, Tuple]: two_dim_input = sample.ndim == 3 and model_output.ndim == 4 if two_dim_input: batch_size, codebook_size, height, width = model_output.shape sample = sample.reshape(batch_size, height * width) model_output = model_output.reshape(batch_size, codebook_size, height * width).permute(0, 2, 1) unknown_map = sample == self.config.mask_token_id if using_topk_topp: model_output = model_output / max(sampling_temperature, 1e-5) if using_topk_topp: top_k=8192 top_p=0.2 if top_k > 0 or top_p < 1.0: model_output = self.top_k_top_p_filtering(model_output, top_k=top_k, top_p=top_p) probs = model_output.softmax(dim=-1) device = probs.device probs_ = probs.to(generator.device) if generator is not None else probs # handles when generator is on CPU if probs_.device.type == "cpu" and probs_.dtype != torch.float32: probs_ = probs_.float() # multinomial is not implemented for cpu half precision probs_ = probs_.reshape(-1, probs.size(-1)) pred_original_sample = torch.multinomial(probs_, 1, generator=generator).to(device=device) pred_original_sample = pred_original_sample[:, 0].view(*probs.shape[:-1]) pred_original_sample = torch.where(unknown_map, pred_original_sample, sample) if timestep == 0: prev_sample = pred_original_sample else: seq_len = sample.shape[1] step_idx = (self.timesteps == timestep).nonzero() ratio = (step_idx + 1) / len(self.timesteps) if self.config.masking_schedule == "cosine": mask_ratio = torch.cos(ratio * math.pi / 2) elif self.config.masking_schedule == "linear": mask_ratio = 1 - ratio else: raise ValueError(f"unknown masking schedule {self.config.masking_schedule}") mask_ratio = starting_mask_ratio * mask_ratio mask_len = (seq_len * mask_ratio).floor() # do not mask more than amount previously masked mask_len = torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len) # mask at least one mask_len = torch.max(torch.tensor([1], device=model_output.device), mask_len) selected_probs = torch.gather(probs, -1, pred_original_sample[:, :, None])[:, :, 0] # Ignores the tokens given in the input by overwriting their confidence. selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max) masking = mask_by_random_topk(mask_len, selected_probs, self.temperatures[step_idx], generator) # Masks tokens with lower confidence. prev_sample = torch.where(masking, self.config.mask_token_id, pred_original_sample) if two_dim_input: prev_sample = prev_sample.reshape(batch_size, height, width) pred_original_sample = pred_original_sample.reshape(batch_size, height, width) if not return_dict: return (prev_sample, pred_original_sample) return SchedulerOutput(prev_sample, pred_original_sample) def add_noise(self, sample, timesteps, generator=None): step_idx = (self.timesteps == timesteps).nonzero() ratio = (step_idx + 1) / len(self.timesteps) if self.config.masking_schedule == "cosine": mask_ratio = torch.cos(ratio * math.pi / 2) elif self.config.masking_schedule == "linear": mask_ratio = 1 - ratio else: raise ValueError(f"unknown masking schedule {self.config.masking_schedule}") mask_indices = ( torch.rand( sample.shape, device=generator.device if generator is not None else sample.device, generator=generator ).to(sample.device) < mask_ratio ) masked_sample = sample.clone() masked_sample[mask_indices] = self.config.mask_token_id return masked_sample